

INFORMATION about publication activity FACULTY OF MECHANICS AND MATHEMATICS

Nº	Наименован ие публикации	Выходные данные (doi cmamьи)	Аннотация статьи	Ссылка для цитирования (Ф.И.О., название статьи, название, номер и/или выпуск, том журнала, страницы, doi статьи)
1.	Numerical simulation on solar collector and cascade heat pump combi water heating systems in Kazakhstan climates	DOI: https://doi.org/10.1016/j.renene.2019.06. 102 (SJR 0,83;Q1, Procentile 88 (Renewable Energy, Sustainability and the Environment)).	At low ambient temperatures, the heating capacity and coefficient of performance of a single stage vapour compression heat pump cycle is significantly getting reduced. The two stage cascade heat pump cycle operating with two different refrigerants provides a sustainable solution to lift the condenser temperature above 343 K. In this work, a numerical simulation model was developed for predicting the performance of a solar collector and two stage cascade heat pump combi water heating systems under Kazakhstan climatic conditions. The numerical simulation was performed for winter climatic conditions using nine refrigerant pairs such as, R32/R290,	Yerdesh, Y., Abdulina, Z., Aliuly, AMohanraj, M., Kaltayev, A, Numerical simulation on solar collector and cascade heat pump combi water heating systems in Kazakhstan climates. //Renewable Energy. – 2020. – Vol.145. – P.1222-1234 DOI: https://doi.org/10.1016/j.renene.2019.06.1 02

2.	A Study of Secular Perturbations of Translational- Rotational Motion in a Nonstationary Two-Body Problem Using Computer Algebra	DOI: 10.1134/S0965542520010054 (SJR 0,53;Q2, Procentile 35(Mathematics - Computational Mathematics)).	R32/R1234yf, R32/R134a, R410A/R290, R410A/R1234yf, R410A/R134a, R744/R290, R744/R1234yf and R744/R134a. The influences of solar irradiation, ambient temperature and condenser temperature are discussed. The solar collector and two stage heat pump combi heating system has about 30% energy savings when compared to the conventional two stage cascade heat pump without integration solar collectors. The R32/R290 refrigerant pair is having maximum coefficient of performance of 2.4 at 323 K condensing temperature and 263 K evaporating temperature. The refrigerant R744/R290 pair is identified as an environment friendly sustainable option in terms of its global warming impact for two stage cascade heat pump applications. A nonstationary two-body problem is considered such that one of the bodies has a spherically symmetric density distribution and is central, while the other one is a satellite with axisymmetric dynamical structure, shape, and variable oblateness. Newton's interaction force is characterized by an approximate expression of the force function up to the second harmonic. The body masses vary isotropically at different rates. Equations of motion of the satellite in a relative system of coordinates are derived. The problem is studied by the methods of perturbation theory. Equations of secular perturbations of the translational-rotational	Bizhanova, S.B., Minglibayev, M.Z., Prokopenya, A.N., A Study of Secular Perturbations of Translational-Rotational Motion in a Nonstationary Two-Body Problem Using Computer Algebra. //Mechanisms and Machine ScienceComputational Mathematics and Mathematical Physics,. – 2020. – Vol.60. – P.26-35 DOI: 10.1134/S0965542520010054
			derived. The problem is studied by the methods	DOI: 10.1134/30903342320010034

		<u> </u>	computer algebra system. © 2020, Pleiades	
			Publishing, Ltd.	
2	Numerical	DOI: https://doi.org/10.2119/202570.MC	Two-phase flow through a fibrous porous	Alreadesse 7 Assilhalress D. Vardailarias
3.	calculation of the	DOI: https://doi.org/10.2118/202570-MS	medium is numerically simulated. The goal of	Akasheva, Z., Assilbekov, B., Kudaikulov,
	pressure drop and	(SJR 0, Procentile -).		A., Bolysbek, D., Numerical calculation of
	saturation of two-		the study is to investigate the effect of	the pressure drop and saturation of two-
	phase flow through		numerical slip length on variation of pressure	phase flow through porous medium.
	porous medium		drop and saturation. The simulation is based	//Society of Petroleum Engineers - SPE
	porous medium		on the numerical solution of incompressible	Annual Caspian Technical Conference
			Navier-Stokes equations for two-phase flow	2020, CTC 2020. – 2020. SPE Annual
			around a circular cylinder with radii in the	Caspian Technical Conference 2020, CTC
			ranges from 0.1 to 0.4. Variations of pressure	2020
			drop and saturation in time are numerically	DOI: https://doi.org/10.2118/202570-MS
			calculated on simple and snap meshes for	Bon intepony donorg 10.2110/2020 / 0 1/15
			different values of surface tension (o), viscosity	
			ratio (M = $\mu_{\text{nw}}/\mu_{\text{w}}$), and mesh sizes. Also,	
			numerical results using simple and snap	
			meshes are compared. Numerical calculations	
			are performed using the interFoam solver in	
			OpenFOAM® finite volume library. The	
			presented results show that solutions of	
			saturation and pressure drop in time vary with	
			mesh refinement, so the numerical slip length	
			significantly affects the flow. For a coarser	
			mesh the influence of numerical slip length is	
			less than for a finer mesh, also as bigger the	
			value of the viscosity ratio or surface tension as	
			lower the influence of numerical slip length.	
			The results show that the contact line motion	
			significantly depends not only on the	
			microstructure of the porous media, but also	
			on the fluid properties (viscosity ratio, surface	
1			tension and etc.). Copyright 2020, Society of Petroleum Engineers.	
1	Evnovimental and	DOI: 40.4424/04.00270.402004.0400	The compact multistory wind power plants	Kupakhaay T Tanashaya N.K
4.	Experimental and Theoretical Studies	DOI: 10.1134/S1063784220010168	developed by authors for the first time in the	Kunakbaev, T., Tanasheva, N.K.,
	of the Efficiency of	(SJR 0,3;Q3, Procentile 23(Engineering	world have been studied. Their efficiency due	Dyusembaeva, A.N., Shaimerdenova,
	Autonomous	Mechanical Engineering)	to the autonomy, compactness, and use of draft	K.M., Sagitzhanov, B.M., Experimental and
	Multistory Wind	18(Engineering	effect, which occurs between stories, has been	Theoretical Studies of the Efficiency of
	Power Plants		shown. Thanks to this, compact multistory	Autonomous Multistory Wind Power Plants.
	1 5 WOL I MILLS		shown, manks to this, compact multistory	

		Mechanics of Materials)23(Physics and Astronomy - Physics and Astronomy (miscellaneous))).	wind power plants will have some advantages in comparison with conventional wind power plants and separated wind-driven generators with the same power. © 2020, Pleiades Publishing, Ltd.	//Technical Physics. – 2020. – Vol.65. – P.37-40 DOI: 10.1134/S1063784220010168
5.	Automated determination of internal points of the coordinate grid of the blasted rock mass	DOI: 10.1051/e3sconf/202016800015 (SJR 0,2; Procentile 25(Energy General Energy) 20(Environmental Science General Environmental Science) 19(Earth and Planetary Sciences General Earth and Planetary Sciences)).	An automated method for determining the internal points of the coordinate grid of the blasted rock mass is described. It is based on the method of determining the nodal points of the coordinate grid of the blasted rock mass, which is based on taking into account the dependencies that connect the initial parameters of the blasting rock mass with the final location of the fixed points of the blasted rock mass. The determining factors are the specific height and width of the collapse, the coefficient of loosening of the rocks. The method of analysis of experimental and industrial mass explosions in quarries, methods of analytical geometry, matrix theory and linear algebra are used. For the first time in mining, an analytical method has been developed for determining the internal points of the coordinate grid of an exploded block. It includes the established functions of the movement of nodal points, components of the vectors of movement of nodal and internal points of the coordinate grid. The established dependencies allow one to determine the displacements of any point inside the coordinate grid of the blasted block from the initial coordinates of the nodal and internal points. © The Authors, published by EDP Sciences, 2020.	Rakishev, B., Rakisheva, Z., Auezova, A., Orynbay,, Automated determination of internal points of the coordinate grid of the blasted rock mass. //E3S Web of Conferences DOI: 10.1051/e3sconf/202016800015
6.	Digital hierarchical model of lumpiness of blasted rock mass	DOI: 10.1080/25726668.2020.1838775 (SJR 0,56;Q2, Procentile 54(Earth and Planetary Sciences Geology) 48(Earth and Planetary Sciences	The article describes the developed new digital hierarchical model of lumpiness of blasted rocks. It is based on a combination of classes of pieces of rock by size, taken as hierarchical levels of lumpiness of rocks, and the percentage	Rakishev, B., Rakisheva, Z.B., Auezova, A.M., Orynbay, A.A., Digital hierarchical model of lumpiness of blasted rock mass. //Mining Technology: Transactions of

7. The Effect of Applied Pressure Function on Thermo-elastic Problem in the Dry Friction Clutches	Geotechnical Engineering and Engineering Geology)). DOI: 10.1007/s11668-020-01031-4 (SJR 0,25;Q3, Procentile 36(Engineering Safety, Risk, Reliability and Quality) 34(Engineering Mechanical Engineering) 29(Materials Science General Materials Science) 29(Engineering Mechanics of Materials)).	of pieces in classes, adopted for its numerical characteristics. 7 classes of rocks by size are considered, each of which is characterized by the content of its pieces. The key component of the proposed model - the granulometric composition of the blasted rocks is determined by the block mass of the rocks, the size of the zones of intense crushing, the volume of crushed rocks due to the action of stress waves and reflected waves (I stage of explosion), detonation products (swelling effect of the explosion) (II stage of explosion), and collisions of large pieces when moving (III stage of explosion). The regularities of the formation of these explosion results are established depending on the different combination of the physicomechanical properties of the rocks of the massif, the chemophysical characteristics of the explosive used, the parameters of the explosives and the explosive method. © 2020 Institute of Materials, Minerals and Mining and The AusIMM Published by Taylor & Francis on behalf of the Institute and The AusIMM. The main purpose of this paper is to investigate deeply the effect the contact pressure function on the thermo-mechanical behavior of the friction clutch system during the slipping time (heating stage). The other purpose is to explore theoretically the complex interaction among the contact pressure, sliding speed and frictional characteristics of frictional facings to specify the magnitude and distribution of the frictional heating generation on the contact surfaces of the dry friction clutch under different applied pressure. It was developed a numerical code based on finite element	the Institute of Mining and Metallurgy. – 2020. – Vol.128(4)P.228-237 DOI: 10.1080/25726668.2020.1838775 Stojanovic, N., Abdullah, O.I., Rakisheva, Z.B., Lattieff, F.A., Hashim, E.T., The Effect of Applied Pressure Function on Thermoelastic Problem in the Dry Friction Clutches. //Journal of Failure Analysis and Prevention. – 2020. – Vol.20(6). – P.2145-2152 DOI: 10.1007/s11668-020-01031-4
		numerical code based on finite element method (ANSYS/APDL 2019) to determine	

8.	Experimental and Theoretical Studies	DOI: 10.1134/S1063784220010168 (SJR 0,3;Q3, Procentile 23(Physics and	and frictional heat generated on contact surfaces of the friction clutch disc that has two effective frictional faces at any instant during the slipping period. It was found a significant effect of the magnitude and variation of applied pressure during the heating phase on the surface temperatures, contact pressure and frictional heat generated. Where, the hot spot can be appeared when the applied pressure is constant. Under such circumstances, high amount of temperature and contact pressure focused on a small zone of the nominal contact area. This phenomenon is considered one of the main reasons for the early failure of the contacting surfaces of friction clutch. © 2020, ASM International. The compact multistory wind power plants developed by authors for the first time in the	Kunakbaev, T., Tanasheva, N.K., Dyusembaeva, A.N., Shaimerdenova,
	of the Efficiency of Autonomous Multistory Wind Power Plants	Astronomy -Physics and Astronomy (miscellaneous))).	world have been studied. Their efficiency due to the autonomy, compactness, and use of draft effect, which occurs between stories, has been shown. Thanks to this, compact multistory wind power plants will have some advantages in comparison with conventional wind power plants and separated wind-driven generators with the same power. © 2020, Pleiades Publishing, Ltd.	K.M., Sagitzhanov, B.M., Experimental and Theoretical Studies of the Efficiency of Autonomous Multistory Wind Power Plants. //Technical Physics. – 2020. – Vol.65. – P.37-40 DOI: 10.1134/S1063784220010168
9.	Synthesis of four- bar linkage with adjustable crank length for multi- path generation	DOI:10.18178/ijmerr.9.4.489-495 (SJR 0,19;Q4, Procentile 26(Engineering Mechanical Engineering) 22(Engineering Control and Systems Engineering) 14(Computer Science Artificial Intelligence)).	Synthesis of planar mechanism with adjustable crank length for generating multiple paths is presented. Least-square approximation problem is considered which allows carrying out approximate synthesis with unlimited number of desired coupler point positions and with unlimited number of prescribed trajectories. By reducing the task to synthesis of two-element link with variable binary link length, which is called RPR-module, the analytical solution is obtained to determine not only constant design parameters (mechanism	Ibrayev S.,Jomartov A.,Tuleshov A.,Jamalov N.,Ibrayev A.,Mukhambetkalieva G.,Aidasheva G.,Kamal A.,Synthesis of four-bar linkage with adjustable crank length for multi-path generation. //International Journal of Mechanical Engineering and Robotics Research. – 2020. – Vol.9(4). – P.489-495 DOI: 10.18178/ijmerr.9.4.489-495

			link lengths) but the adjusting parameter values as well. Thus the number of design variables for non-linear optimization (applied to find the remaining parameters) will be decreased significantly. The applied method is exemplified by synthesis of the mechanism for variable straight line generation, where the required height of the end-effector is adjusted by adjusting the crank length. Combined with random search technique the method allows to find all local minimums of the optimized goal function and thus allows to take full advantage from the considered mechanism structure during design. © 2020 by the authors.	
10.	Designing of the stephenson ii six-link linkage actuator for servo mechanical press	DOI: 10.24247/ijmperdapr202053 (SJR 0; Procentile 22(Engineering Mechanical Engineering) 22(Engineering Aerospace Engineering) 17(Chemical Engineerin Fluid Flow and Transfer Processes)).	Currently, servo mechanical presses with an actuator based on a slider-crank mechanism are widely used for stamping details. One of the major problems of these servo mechanical presses is inclination of slide caused by eccentric application of deforming force and total linear elastic deformation of the press links and stamps under load. The inclination of the slide of the servo mechanical press reduces the accuracy of punching and causes its jamming and lead to its breakage. To eliminate these problems, it is proposed to use Stephenson II six-bar linkage as an actuator of servo mechanical press. The scheme structure of the actuator of servo mechanical press with two connecting rods and one crank based on the Stephenson II six-bar linkage is obtained. Synthesis of the Stephenson II six-bar linkage was carried out. As a result of synthesis, a new actuator of servo mechanical press on the base of the Stephenson II six-bar linkage was obtained and its prototype was made. The prototype of the new actuator of servo mechanical press based on the Stephenson II six-bar linkage was obtained press based on the Stephenson II six-bar linkage was linkage was linkage was tested. Testing of the	Jomartov, A., Tuleshov, A., Jamalov, N., Kuatova, K., Kaimov, A., Designing of the stephenson ii six-link linkage actuator for servo mechanical press. //International Journal of Mechanical and Production Engineering Research and Development. — 2020. — Vol.10(2). — P.501-512 DOI: 10.24247/ijmperdapr202053

			prototype of the new actuator of servo	
			mechanical press showed a good distribution of the efforts applied during the presswork and	
			a better tolerance of the eccentric load. ©	
			TJPRC Pvt. Ltd.	
11.	Optimal synthesis of planar linkages	DOI: 10.32014/2020.2518-170X.21 (SJR 0,32;Q3, Procentile 23(Engineering Mechanical Engineering) 18(Engineering Mechanics of Materials)40(Earth and Planetary Sciences Geology) 37(Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology)).	This paper investigates the optimal synthesis of planar linkages. The main idea of this paper is to find the initial approximations based on the use of Burmester points for function generator linkages, path generator linkages, motion generator linkages. The results of the numerical synthesis of the linkages depend on the choice of the initial approximations. A more flexible method to the search for initial approximations is the method based on the use of Burmester points. This method allows the determination of the initial approximations analytically for three, four or five by established initial data of synthesis. In this case, the problem is reduced to determining the solutions of polynomials, respectively the second, third and fourth degree. The method consists in that the synthesized linkage is conditionally divided into initial kinematic chains and closing kinematic chains, and Burmester points are determined for each chain. After the choice of initial approximations, an objective function is formed according to the output criteria, depending on the synthesis parameters, using the Chebyshevsky (best) or quadratic approximation problems. The synthesis parameters of planar linkages are determined from objective function minimum. According to this method, a program for the synthesis of planar linkages has been developed. An example is included to demonstrate the method. © 2020, National Academy of	Tuleshov, A.K., Jomartov, A.A., Ibrayev, S., Jamalov, N.K., Halicioglu, R., A gripper mechanism to automate overload process for fuel elements. //News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences. – 2020. – Vol.1(439). – P.172-180 DOI: 10.32014/2020.2518-170X.21

		T	C.'	<u> </u>
			Sciences of the Republic of Kazakhstan. All	
			rights reserved.	
12.	Synthesis of four- bar linkage with adjustable crank length for multi- path generation	DOI: 10.18178/ijmerr.9.4.489-495 (SJR 0,19;Q4, Procentile 26(Engineering Mechanical Engineering) 22(Engineering Control and Systems Engineering) 14(Computer Science Artificial Intelligence)).	Synthesis of planar mechanism with adjustable crank length for generating multiple paths is presented. Least-square approximation problem is considered which allows carrying out approximate synthesis with unlimited number of desired coupler point positions and with unlimited number of prescribed trajectories. By reducing the task to synthesis of two-element link with variable binary link length, which is called RPR-module, the analytical solution is obtained to determine not only constant design parameters (mechanism link lengths) but the adjusting parameter values as well. Thus the number of design variables for non-linear optimization (applied to find the remaining parameters) will be decreased significantly. The applied method is exemplified by synthesis of the mechanism for variable straight line generation, where the required height of the end-effector is adjusted by adjusting the crank length. Combined with random search technique the method allows to find all local minimums of the optimized goal function and thus allows to take full advantage from the considered mechanism structure during design. © 2020 by the authors.	Ibrayev S.,Jomartov A.,Tuleshov A.,Jamalov N.,Ibrayev A.,Mukhambetkalieva G.,Aidasheva G.,Kamal A.,Synthesis of four-bar linkage with adjustable crank length for multi-path generation. //International Journal of Mechanical Engineering and Robotics Research. – 2020. – Vol.9(4). – P.489-495 DOI: 10.18178/ijmerr.9.4.489-495
13.	GNSS-Based Attitude Determination Techniques-A Comprehensive Literature Survey	DOI: 10.1109/ACCESS.2020.2970083 (SJR 0,59;Q1, Procentile 87(Engineering General Engineering) 81(Computer Science General Computer Science) 70(Materials Science General Materials Science)).	GNSS-based Attitude Determination (AD) of a mobile object using the readings of the Global Navigation Satellite Systems (GNSS) is an active area of research. Numerous attitude determination methods have been developed lately by making use of various sensors. However, the last two decades have witnessed an accelerated growth in research related to GNSS-based navigational equipment as a reliable and competitive device for determining the attitude of any outdoor	Raskaliyev, A., Patel, S.H., Sobh, T.M., Ibrayev, A., GNSS-Based Attitude Determination Techniques-A Comprehensive Literature Survey. //IEEE Access. – 2020. – Vol.8. – P.24873–24886, 8972427 DOI: 10.1109/ACCESS.2020.2970083

14.	Some approaches to assessing the quality of masking noise interference of spatial noise generators	DOI: (SJR 0,15;Q4, Procentile 36(Computer Science General Computer Science) 16(Mathematics Theoretical Computer Science)).	moving object using data demodulated from GNSS signals. Because of constantly increasing number of GNSS-based AD methods, algorithms, and techniques, introduced in scientific papers worldwide, the problem of choosing an appropriate approach, that is optimal for the given application, operational environment, and limited financial funding becomes quite a challenging task. The work presents an extensive literature survey of the methods mentioned above which are classified in many different categories. The main aim of this survey is to help researchers and developers in the field of GNSS applications to understand pros and cons of the current state of the art methods and their computational efficiency, the scope of use and accuracy of the angular determination. © 2020 IEEE. The article discusses the characteristics of spatial electromagnetic noise generators and the formation of a broadband noise signal. It also describes a number of known methods and methods for assessing the quality of masking noise interference and their differences. Different approaches to measuring masking noise when evaluating its quality are proposed. The first method is based on the measurement of the instantaneous values of the amplitudes of the noise signal and the calculation of the entropy coefficient based on this method. The second method involves searching for correlation of masking noise signals of noise generators in different frequency subbands. The third approach is to use statistical and (or) graphical methods (tests) for randomness. The completeness and objectivity of assessing the quality of masking noise interference from spatial noise generators will be achieved by	Smailov, N., Batyrgaliyev, A., Seilova, N., Kuttybaeva, A., Ibrayev, A., Some approaches to assessing the quality of masking noise interference of spatial noise generators. //Journal of Theoretical and Applied Information Technology. – 2020. – Vol.98. – P.3555-3574 DOI:
-----	--	--	---	--

		Г		<u> </u>
			combining all the methods. © 2005 – ongoing	
1.5	CDII A 1 1	DOI 10 1010	JATIT & LLS.	T MO W W ND
15.	GPU Accelerated Modeling of In-Situ Leaching Process and Streamline Based Reactive Transport Simulation	DOI: 10.1016/j.procs.2020.11.016 (SJR 0,33; Procentile 68(Computer Science General Computer Science)).	In present paper GPU acceleration modeling and Streamline based reactive transport simulation for uranium In-Situ leaching process is studied. In-Situ leaching (ISL) is a method of selective dissolution of mineral inside of rock by injection of leaching solution to the layer through the wells and chemical interaction of leaching solution with ore. Changing of flow rates on wells over time leads to increasing computational time and simulation of In-Situ leaching problem becomes resource-intensive problem. Acceleration of the hydrodynamic of the ISL process is carried out on GPU; parallelization of reactive mass transport due to reaction of leaching solute with mineral is performed by with multi-Threading and streamlines simulation. © 2020 Elsevier B.V All rights reserved.	Tungatarova, M.S., Kurmanseiit, M.B., Shayakhmetov, N.M., GPU Accelerated Modeling of In-Situ Leaching Process and Streamline Based Reactive Transport Simulation. //Procedia Computer Science. – 2020. – Vol.178. – P.145-152 DOI: 10.1016/j.procs.2020.11.016
16.	Synthesis of four- bar linkage with adjustable crank length for multi- path generation	DOI: 10.18178/ijmerr.9.4.489-495 (SJR 0,19;Q4, Procentile 26(Engineering Mechanical Engineering) 22(Engineering Control and Systems Engineering) 14(Computer Science Artificial Intelligence)).	Synthesis of planar mechanism with adjustable crank length for generating multiple paths is presented. Least-square approximation problem is considered which allows carrying out approximate synthesis with unlimited number of desired coupler point positions and with unlimited number of prescribed trajectories. By reducing the task to synthesis of two-element link with variable binary link length, which is called RPR-module, the analytical solution is obtained to determine not only constant design parameters (mechanism link lengths) but the adjusting parameter values as well. Thus the number of design variables for non-linear optimization (applied to find the remaining parameters) will be decreased significantly. The applied method is exemplified by synthesis of the mechanism for	Ibrayev S.,Jomartov A.,Tuleshov A.,Jamalov N.,Ibrayev A.,Mukhambetkalieva G.,Aidasheva G.,Kamal A.,Synthesis of four-bar linkage with adjustable crank length for multi-path generation. //International Journal of Mechanical Engineering and Robotics Research. – 2020. – Vol.9(4). – P.489-495 DOI: 10.18178/ijmerr.9.4.489-495

			variable straight line generation, where the required height of the end-effector is adjusted by adjusting the crank length. Combined with random search technique the method allows to find all local minimums of the optimized goal function and thus allows to take full advantage from the considered mechanism structure during design. © 2020 by the authors.	
17.	Designing of the stephenson ii six-link linkage actuator for servo mechanical press	DOI: 10.24247/ijmperdapr202053 (SJR 0; Procentile 22(Engineering Mechanical Engineering) 22(Engineering Aerospace Engineering) 17(Chemical Engineering Fluid Flow and Transfer Processes)).	Currently, servo mechanical presses with an actuator based on a slider-crank mechanism are widely used for stamping details. One of the major problems of these servo mechanical presses is inclination of slide caused by eccentric application of deforming force and total linear elastic deformation of the press links and stamps under load. The inclination of the slide of the servo mechanical press reduces the accuracy of punching and causes its jamming and lead to its breakage. To eliminate these problems, it is proposed to use Stephenson II six-bar linkage as an actuator of servo mechanical press. The scheme structure of the actuator of servo mechanical press with two connecting rods and one crank based on the Stephenson II six-bar linkage is obtained. Synthesis of the Stephenson II six-bar linkage was carried out. As a result of synthesis, a new actuator of servo mechanical press on the base of the Stephenson II six-bar linkage was obtained and its prototype was made. The prototype of the new actuator of servo mechanical press based on the Stephenson II six-bar linkage was obtained and its prototype was made. The prototype of the new actuator of servo mechanical press based on the Stephenson II six-bar linkage was tested. Testing of the prototype of the new actuator of servo mechanical press showed a good distribution of the efforts applied during the presswork and a better tolerance of the eccentric load. © TJPRC Pvt. Ltd.	Jomartov, A., Tuleshov, A., Jamalov, N., Kuatova, K., Kaimov, A., Designing of the stephenson ii six-link linkage actuator for servo mechanical press. //International Journal of Mechanical and Production Engineering Research and Development. – 2020. – Vol.10(2). – P.501-512 DOI: 10.24247/ijmperdapr202053

18.	Dynamic Model of	DOI: 10.1007/978-3-030-30036-4_12	The paper studies the dynamic of a brake of	Jomartov, A., Tuleshov, A., Kuatova, M.,
10.	a Crank Press in the	_	crank press. At present, the dynamic research	
	Process of Braking	(SJR 0,16;Q4, Procentile 23(Engineering	of brake of the crank presses, with account of	Dynamic Model of a Crank Press in the
	Trocess of Braking	Mechanical Engineering)	interaction with other links, is a priority. The	Process of Braking. //Mechanisms and
		18(Engineering		Machine Science. – 2020. – Vol.78. –
		Mechanics of Materials)).	crank press contains movable parts and links,	P.141-150
			the mass of which is from one hundred	DOI: 10.1007/978-3-030-30036-4_12
			kilograms to several tons. These parts and links	
			are cyclically stopped when braking with a	
			crank press almost instantaneously, and they	
			are subject to high dynamic loads. To simulate	
			and analyze the movement of crank press with	
			brake, a software package: SimulationX is	
			used. SimulationX is a software package for	
			modeling and analyzing the dynamics and	
			kinematics of cars, industrial equipment,	
			electric, pneumatic and hydraulic drives,	
			hybrid engines, etc. As a result of dynamic	
			calculation, important dynamic parameters of	
			the crank press brake and working ram are	
			determined. It is shown that dynamic loads	
			sharply increase almost in all links of the crank	
			press when the brake is switched on. © 2020,	
1.0	C411	DOI	Springer Nature Switzerland AG.	Deigunehaltert 7 6Navmahart
19.	Structurally	DOI:	In this paper, the methods of structurally	Baigunchekov Z.6Naurushev
	parametric	(SJR 0,26;Q3, Procentile 49(Mathematics	parametric synthesis and position analysis of a	B.,Zhumasheva Z.,Mustafa A.,Kairov R.,
	synthesis and position analysis of	Applied Mathematics)).	RoboMech class parallel manipulator with two	Amanov B, Structurally parametric synthesis
	a robomech class		end-effectors are presented. This parallel	and position analysis of a robomech class
	parallel manipulator		manipulator is formed by connecting the two	parallel manipulator with two end-effectors.
	with two end-		moving output objects with the fixed base by	//IAENG International Journal of
	effectors		two passive, one active and two negative	Applied Mathematics. – 2020. – Vol.5(1-
	011001015		closing kinematic chains. Geometrical	77). – P.1-11
			parameters of the active and negative closing	DOI:
			kinematic chains are determined by the	
			Chebyshev and least-square approximations.	
			Position analysis is made on base of the	
			conditional generalized coordinates method. © 2020 International Association of	
			Engineers.	

20.	The First Type of Singularity of a 3- PRRS Parallel Manipulator	DOI: 10.1007/978-3-030-48989-2 38 (SJR 0,16;Q4, Procentile 23(Engineering Mechanical Engineering) 18(Engineering Mechanics of Materials)).	In this paper, the first type of singularity of a 3-PRRS parallel manipulator is considered. This type of singularity appears when the determinant of the Jacobian matrix of the generalized velocities goes to zero. In this case, the parallel manipulator loses one or more degrees of freedom (DOF). From the analysis of the degeneracy of the generalized velocities Jacobian matrix, the conditions of the first type singular configurations are determined.	Baigunchekov, Z., Laribi, M.A., Izmambetov, M., Zhumasheva, Z., Kaiyrov, R,The First Type of Singularity of a 3-PRRS Parallel Manipulator. //Mechanisms and Machine Science. — 2020. — Vol.84. — P.356-363 DOI: 10.1007/978-3-030-48989-2_38
21.	Performance analysis of crushed gravel sand heat storage and biomass evaporator-assisted single slope solar still	DOI:10.1007/s11356-021-15487-w (SJR 0,85;Q2, Procentile 79 (Environmental Science-Pollution) 76(Environmental Science-Health, Toxicology and Mutagenesis) 67(Environmental Science-Environmental Chemistry)).	In this research work, the productivity, energy, exergy, and economic and enviro-economic performance in crushed gravel sand heat storage and biomass evaporator-assisted solar still (CGS-BSS) have been investigated and compared the results with conventional solar still (CSS) under the similar climatic conditions of Coimbatore City during the year 2019. The heat accumulated in crushed gravel sand and biomass evaporator have been used to preheat the inlet saline water and air vapor before entering into the solar still. This results in enhanced air vapor mixture temperature and evaporative heat transfer rate of CGS-BSS significantly. The productivity, energy, and exergy efficiencies in CGS-BSS were improved by 34.6%, 34.4%, and 35%, respectively when compared to CSS. In economic analysis, the payback period (PBP) in both CGS-BSS and CSS was estimated to be about 4.7 months and 3.9 months, respectively. Furthermore, in enviro-economic analysis, the CO2 emission estimated in CGS-BSS and CSS was about 16.63 tons and 8.18 tons, respectively during its lifetime of 10 years.	Ramasamy Dhivagar, Murugesan Mohanraj, Yerzhan Belyayev ,Performance analysis of crushed gravel sand heat storage and biomass evaporator-assisted single slope solar still. //Environmental Science and Pollution Research. — 2021. DOI: 10.1007/s11356-021-15487-w
22.	Walking Robot Leg	DOI:10.1007/978-3-030-58380-4_32	The planar straight-line generating linkages	Ibrayev S.,Jamalov N.,Tuleshov
	Design Based on Translatory	(SJR 0,21;Q3, Procentile 37(Engineering Mechanical Engineering) 32(Engineering	are of great interest for walking robot propel, especially to reduce power consumption and simplify control. Optimal design of six-link leg	A.,Jomartov A.,Ibrayev A.,Kamal A.,Ibrayeva A.,Bissembayev K., Walking Robot Leg Design Based on Translatory

	Straight-Line Generator	Mechanics of Materials) 30(Computer Science Computer Science Applications) 27(Mathematics Modeling and Simulation)).	linkage is proposed with unlimited foot adaptation on terrain irregularities due to rectilinear and translatory motion of the output link, referred to as shin-link. The analytical method of synthesis is proposed based on least-square approximation. Due to minimizing directly the deviation from the desired output motion, the method does not suffer from so called branching defect and allows synthesizing the mechanism with desired transmission angle. Multi-criteria optimization attaining both the best accuracy and transmission angle is carried out and leglinkage with maximal value of duration ratio of support and transference phases of the leg step cycle is presented. © 2021, CISM International Centre for Mechanical Sciences.	Straight-Line Generator. //CISM International Centre for Mechanical Sciences, Courses and Lectures. – 2021. – Vol.601. – P.264-271 DOI: 10.1007/978-3-030-58380-4_32
23.	Dynamic Model of Servo Mechanical Press	DOI:10.1007/978-3-030-58380-4_21 (SJR 0,21;Q3, Procentile 37(Engineering Mechanical Engineering) 32(Engineering Mechanics of Materials) 30(Computer Science Computer Science Applications) 27(Mathematics Modeling and Simulation)).	Servo mechanical press is a mechatronic system, consisting of a reducer, actuator and a servomotor with a controller. Control of the servo mechanical press is carried out with a help of the controller depending of technological process of pressing. Reverse kinematic analysis of the actuator of the servo mechanical press is presented in the work to determine the law of motion of a crank, reproducing the specified law of motion of the servo mechanical press slide. Obtained law of motion of the actuator's crank of the servo mechanical press is necessary to choose the servomotor. Considering that servo mechanical press works by complex programmable motion large dynamic loads occur in its nodal points and links. The work proposes to simulate the dynamics of the servo mechanical press on the software complex SimulationX. Dynamic model of the servo mechanical press is composed with account for elastic-dissipative characteristics of the links and the parameters of the servomotor, for different laws of motion of the slide. A dynamic	Jomartov, A., Tuleshov, A., Jamalov, N., Temirbekov, Y., Bostanov, B., Dynamic Model of Servo Mechanical Press. //CISM International Centre for Mechanical Sciences, Courses and Lectures. – 2021. – Vol.601. – P.170-178 DOI: 10.1007/978-3-030-58380-4_21

24.	Unsteady Resonant Oscillations of a Gyroscopic Rigid Rotor with Non- linear Damping and	DOI:10.1007/978-3-030-83594-1_9 (SJR 0,16;Q4, Procentile 23(Engineering Mechanical Engineering) 18(Engineering	model of a 50-ton servo mechanical press is developed using the SimulationX software package. Calculation was carried out using real data of the existing 50 ton servo mechanical press. As a result of the calculation of the dynamic model of the servo mechanical press, the following data were obtained: motion, velocity, acceleration of the slide, torque effect on the crank, angular rate, torque effect, power of the servomotor. The article is concerned with the effect of linear and cubic non-linear damping of an elastic bearing on forced resonant vibrations of a gyroscopic vertical rigid rotor taking into account non-linear stiffness	Iskakov, Z., Jamalov, N., Bissembayev, K., Unsteady Resonant Oscillations of a Gyroscopic Rigid Rotor with Non-linear Damping and Non-
	Non-linear Rigidity	Mechanics of Materials)).	of the cubic nature of the bearing material. It is confirmed that non-linear cubic damping of the	linear Rigidity of the Elastic Support. //Mechanisms and Machine Science. –
	of the Elastic		support can suppress not only the maximum	2021. – Vol.85. – P.83-93
	Support		amplitude, but also the amplitudes of forced	DOI: 10.1007/978-3-030-83594-1_9
			unsteady oscillations behind the rotation speed	
			corresponding to the maximum amplitude and the	
			variation of its values in time along the main curve,	
			around its mean values. It shifts the speed of	
			rotation of the amplitude maximum, with rigid and	
			soft non-linear elastic characteristics of the support	
			material downwards and upwards, respectively. It is	
			shown that with a "slow" increase in the shaft	
			rotation speed, an increase in the absolute value of	
			the angular acceleration is accompanied by a shift	
			of the amplitude peak towards high speeds, with a "slow" decrease in the shaft rotation speed –	
			towards low speeds with a decrease in the amplitude	
			of oscillations. It is shown that during the rotor	
			takeoff run, the maximum amplitude for the case	
			with a rigid non-linear elasticity characteristic of the	
			support material is greater than the same value for	
			the case with a soft non-linear elasticity	
			characteristic of the support material, and	
			conversely, during the rotor run-down for similar	
			cases.	

25.	Non-isothermal	DOI: https://doi.org/10.1016/j.ijheatmasstr	Accurate simulation and detailed description	Berdenova, B., Pal, A., Saha, B.B.,
	pore change model	ansfer.2021.121480	of the dynamics of the adsorption process	Kaltayev, A., Non-isothermal pore change
	predicting CO2	(SJR 1,71;Q1, Procentile 98(Chemical	play a significant role in forecasting the	model predicting CO2 adsorption onto
	adsorption onto	Engineering Fluid Flow and Transfer	performance of new materials when used in	consolidated activated carbon. //International
	consolidated	Processes) 95(Engineering Mechanical	various adsorption systems, like	Journal of Heat and Mass Transfe
	activated carbon	Engineering) 94(Physics and	cooling/heating. The activated carbon (AC)	2021. – Vol.177. – 121480
		Astronomy Condensed Matter Physics)).	consolidation allows improving the heat	DOI:
		Astronomy Condensed Watter Filysics)).	transfer rate inside the	https://doi.org/10.1016/j.ijheatmasstransf
			adsorption/desorption bed and compacting	er.2021.121480
			the systems. There are numerous	
			mathematical models in literature for gas	
			adsorption onto granular AC. But for	
			consolidated AC, because of the absence of	
			macropores, most assumptions that work	
			well for granular AC may lead to significant	
			discrepancies. Therefore, the present	
			research proposes a new mathematical	
			model for gas (CO2) adsorption onto	
			consolidated adsorbent, a non-isothermal	
			pore change model. The model takes into	
			account the porosity and permeability	
			changes due to the adsorption. The	
			validation of the developed model is	
			performed via comparison with the results	
			obtained experimentally and numerically	
			using an <u>isothermal</u> model. The effective	
			Knudsen diffusion coefficient for the	
			working pair is evaluated from porosity data.	
			The rate of adsorption or mass transfer	
			coefficient is estimated using the van't Hoff	
			plot. The study results could be applied in the	
			development of waste heat-driven cooling	
			systems employing consolidated composite	
			material as the adsorbent. The proposed	
			mathematical model is also applicable for	
			many other working pairs.	
L	L		many outer norming pairs.	

26.	The use of the linear form of dynamical equations of the satellite attitude control system for its analysis and synthesis	DOI:https://doi.org/10.15632/jtam-pl/129071 (SJR 0,29;Q3, Procentile 46(Engineering Mechanical Engineering)).	At present, the methods based on using linearized dynamical equations are applied for syn- thesis of an attitude control system of a satellite with nonlinear dynamics. Linearized equa- tions describe the satellite dynamics approximately, which is the main their disadvantage. This article shows that basing on the angular momentum theorem, the nonlinear dynamical equations of the satellite attitude control system can be represented in the form of linear differential equations with variable coefficients, which makes it possible to use engineering methods of stability analysis and analysis of transient quality in the process of synthesis of the satellite attitude control system.	Moldabekov, M., Sukhenko, A., Shapovalova, D., Yelubayev, S.,The use of the linear form of dynamical equations of the satellite attitude control system for its analysis and synthesis. //Journal of Theoretical and Applied Mechanics (Poland). – 2021. – Vol.59(1). – P.109-120 DOI: https://doi.org/10.15632/jtam-pl/129071
27.	Multi-parametric dynamic analysis of a rolling bearings system	DOI:10.5545/sv-jme.2021.7178 (SJR 0,27;Q3, Procentile 47(Engineering Mechanical Engineering) 42(Engineering Mechanics of Materials)).	A method for calculating amplitudes and constructing frequency characteristics of forced and self-excited vibrations of a rotor-fluid-foundation system on rolling bearings with a non-linear characteristic based on the method of complex amplitudes and harmonic balance has been developed. Non-linear equations of motion of the rotor-fluid-foundation system are derived, and analytical methods of their solution are presented. Frequencies of fundamental and ultra-harmonic resonances are determined. The intervals between self-oscillation frequencies are estimated. The dependence of amplitudes on the amount of fluid in the rotor cavity, the mass of the foundation, linear imbalance, the value of the stiffness coefficient, and the damping coefficient is shown. © 2021 Journal of Mechanical Engineering.	Kydyrbekuly, A., Ibrayev, GG.A., Ospan, T., Nikonov, A., Multi-parametric dynamic analysis of a rolling bearings system. //Strojniski Vestnik/Journal of Mechanical Engineeringe. – 2021. – Vol.67(9). – P.421-432 DOI: 10.5545/sv-jme.2021.7178
28.	Modeling the Separation Process	DOI:10.1007/978-3-030-83594-1_11 (SJR 0,16;Q4, Procentile 23(Engineering	In this paper, we study and analyze the features of the separation process in a centrifugal force field, i.e. centrifugation process in vertical	Kydyrbekuly, A.B., Ibrayev, G.E, Modeling the Separation Process in Vertical Rotor

	in Vertical Rotor	Mechanical Engineering)	rotor systems. The main parameters that	Systems. //Mechanisms and Machine
	Systems	18(Engineering	determine the time of separation of particles	Science. – 2021. – Vol.85. – P.104-113.
	b ystems	, ,	are revealed, and the optimal modes are	DOI: 10.1007/978-3-030-83594-1_11
		Mechanics of Materials)).	indicated both from a constructive and from an	DOI. 10.1007/976-3-030-63594-1_11
			economic point of view. Special cases of a fixed	
			rotor are considered. Nonlinear differential	
			equations of motion of a suspension particle	
			are obtained, which do not have an exact	
			solution. The study is carried out by analytical	
			and numerical methods. The dependences of	
			the slope angles of the tubes on the angular	
			velocity of rotation of the rotor, sedimentation	
			curves that allow one to estimate the time of	
			deposition of particles, as well as the effect of	
			the dispersed composition on the separation	
			process as a whole, are obtained. The results of	
			the study of this work allow us to determine	
			with sufficient accuracy all the necessary	
			characteristics working process of separation	
			and sedimentation, and also allow in certain	
			cases to exclude experimental work. © 2022,	
			The Author(s), under exclusive license to	
			Springer Nature Switzerland AG.	
29.	A Comparison of	DOI:10.3390/en14071896	Defining distinctive areas of the physical	Merembayev, T., Kurmangaliyev, D.,
	Machine Learning	(SJR 0,6;Q2, Procentile 49(Mathematics	properties of rocks plays an important role in	Bekbauov, B., Amanbek, Y.,
	Algorithms in	Applied Mathematics)23(Engineering	reservoir evaluation and hydrocarbon	A Comparison of Machine Learning
	Predicting	Mechanical Engineering Mechanical Engineering	production as core data are challenging to	Algorithms in Predicting Lithofacies: Case
	Lithofacies: Case	\mathcal{E}	obtain from all wells. In this work, we study the	Studies from Norway and Kazakhstan.
	Studies from	18(Engineering	evaluation of lithofacies values using the	//Energies. – 2021. – Vol.14(7). – P.1896
	Norway and	Mechanics of Materials)).	machine learning algorithms in the	DOI: 10.3390/en14071896
	Kazakhstan		determination of classification from various	DOI: 10.3390/e11140/1890
			well log data of Kazakhstan and Norway. We	
			also use the wavelet-transformed data in	
			machine learning algorithms to identify	
			geological properties from the well log data.	
			Numerical results are presented for the	
			multiple oil and gas reservoir data which	
			contain more than 90 released wells from	
			Norway and 10 wells from the Kazakhstan	

30.	Kinematic synthesis method and eccentricity effects of a Stephenson mechanism	DOI:10.5194/ms-12-1-2021 (SJR 0,31;Q2, Procentile 52(Engineering Industrial and Manufacturing Engineering) 50(Engineering Mechanical Engineering) 48(Engineering Civil and Structural Engineering) 48(Chemical Engineering Fluid Flow and Transfer Processes) 46(Engineering Mechanics of Materials) 45(Engineering Control and Systems Engineering)).	field. We have compared the the machine learning algorithms including KNN, Decision Tree, Random Forest, XGBoost, and LightGBM. The evaluation of the model score is conducted by using metrics such as accuracy, Hamming loss, and penalty matrix. In addition, the influence of the dataset features on the prediction is investigated using the machine learning algorithms. The result of research shows that the Random Forest model has the best score among considered algorithms. In addition, the results are consistent with outcome of the SHapley Additive exPlanations (SHAP) framework. Copyright: © 2021 by the authors. When implementing the technological process on crank presses, it is necessary to provide a predetermined working cycle of the slider motion: fast lifting, dwell, and slow lowering. The cycle cannot be realized without controlling the motor. In addition, using controllable motors increases the manufacturing cost. Due to the geometric and kinematic capabilities of the mechanism, changing the kinematics of the working link is the best choice. Thanks to the use of the Stephenson II mechanism, the slider skew is eliminated due to the parallel connecting rods and the increased area of slider contact. This study presents a numerical method for kinematic synthesis of the Stephenson mechanism that has kinematic advantages. The method is based on mean square deviation which is the minimizing of an objective function. Thanks to the proposed synthesis method, approximate dwell movement can be performed when the slider is on the bottom dead center. In this study, values of the crank length and parallel connecting rods' lengths,	Tuleshov, A., Halicioglu, R., Shadymanova, A., Kuatova, M., Kinematic synthesis method and eccentricity effects of a Stephenson mechanism. //Mechanical Sciences. – 2021. – Vol.12(1). – P.1-8 DOI: 10.5194/ms-12-1-2021
-----	---	--	---	--

31.	Structurally Parametric Synthesis of a RoboMech Class Parallel Manipulator with Three DOF	DOI:10.1007/978-3-030-48989-2_40 (SJR 0,172; Q4, Procentile 23(Mechanical Engineering) 18(Mechanics of Materials)).	angular coordinates of the crank and connecting rods, and the eccentricity of the guide slider relative to the crank rotation axis were obtained. It is observed that eccentricity affects the lower forward and higher backward speed of the slider. The kinematic results of the slider movement are comparatively presented in this article. © 2021 Copernicus GmbH. All rights reserved. This paper presents the methods of structural-parametric synthesis of a parallel manipulator with three DOF (Degree of Freedom) working in a cylindrical coordinate system. This parallel manipulator belongs to the RoboMech class because it works under the setting laws of motions of the end-effector and actuators, which simplifies the control system and improves its dynamics. Parallel manipulators of a RoboMech class work with certain structural schemes and geometrical parameters of their links. The considered parallel manipulator is formed by connecting the output object to a base using one passive and two active closing kinematic chains. The geometrical parameters of their links are determined on the base of the least-square approximations. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020.	Baigunchekov, Z., Tarek, S., Patel, S., Mustafa, A.,Structurally Parametric Synthesis of a RoboMech Class Parallel Manipulator with Three DOF. //Mechanisms and Machine Science. – 2020. – Vol.84. – P.371-379 DOI: 10.1007/978-3-030-48989-2_40
32.	The First Type of Singularity of a 3- PRRS Parallel Manipulator , 2020, 84, ctp. 356–363	DOI:10.1007/978-3-030-48989-2_38 (SJR 0,172; Q4, Procentile 23(Mechanical Engineering) 18(Mechanics of Materials))	In this paper, the first type of singularity of a 3-PRRS parallel manipulator is considered. This type of singularity appears when the determinant of the Jacobian matrix of the generalized velocities goes to zero. In this case, the parallel manipulator loses one or more degrees of freedom (DOF). From the analysis of the degeneracy of the generalized velocities Jacobian matrix, the conditions of the first type	Baigunchekov, Z., Laribi, M.A., Izmambetov, M., Zhumasheva, Z., Kaiyrov, R.,The First Type of Singularity of a 3-PRRS Parallel Manipulator. //Mechanisms and Machine Science. – 2020. – Vol.84. – P.356-363 DOI: 10.1007/978-3-030-48989-2_38

33.	Inverse Kinematics of a 3- PRPS Type Parallel Manipulator	DOI:10.1007/978-3-030-48989-2_39 (SJR 0,172; Q4, Procentile 23(Mechanical Engineering) 18(Mechanics of Materials))	singular configurations are determined. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020. In this paper, geometry and inverse kinematics of a 3-PRPS type parallel manipulator are studied. This parallel manipulator is formed by connecting a moving platform with a base by three passive closing kinematic chains of a PRPS type. Constant and variable parameters characterizing the geometry of links and relative movements of elements of kinematic pairs, respectively, are defined, and the matrices of binary links and kinematic pairs are derived. On the base of these matrices of binary links and kinematic pairs, the inverse kinematics problem is solved and numerical results are presented. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020.	Baigunchekov, Z., Zeghloul, S., Kassinov, A.,Inverse Kinematics of a 3- PRPS Type Parallel Manipulator. //Mechanisms and Machine Science. – 2020. – Vol.84. – P.364-370 DOI: 10.1007/978-3-030-48989-2_39
34.	Structurally parametric synthesis and position analysis of a robomech class parallel manipulator with two end-effectors	DOI: (SJR 0,259; Q3, Procentile 49(Applied Mathematics))	In this paper, the methods of structurally parametric synthesis and position analysis of a RoboMech class parallel manipulator with two end-effectors are presented. This parallel manipulator is formed by connecting the two moving output objects with the fixed base by two passive, one active and two negative closing kinematic chains. Geometrical parameters of the active and negative closing kinematic chains are determined by the Chebyshev and least-square approximations. Position analysis is made on base of the conditional generalized coordinates method. © 2020 International Association of Engineers.	Baigunchekov Z.,Naurushev B.,Zhumasheva Z.,Mustafa A.,Kairov R., Amanov B,Structurally parametric synthesis and position analysis of a robomech class parallel manipulator with two end-effectors. //IAENG International Journal of Applied Mathematics. – 2020. – Vol.5. – P.1-11 DOI:
35.	A robomech class parallel manipulator with	DOI:10.15587/1729-4061.2020.203131	This paper presents the methods of structural- parametric synthesis and kinematic analysis of a	Baigunchekov, Z., Mustafa, A., Sobh, T., Patel, S., Utenov, M., A robomech class parallel manipulator with three degrees of

three degrees of (SJR 0,268; Q3, Procentile 56(Applied parallel manipulator with three degrees of freedom freedom. //A robomech class parallel freedom working in a cylindrical coordinate system. This manipulator with three degrees of Mathematics) 54(Management of 2020, 3(7-105), parallel manipulator belongs to a RoboMech class freedom. – 2020. – Vol.3(7-105). – P.44-Technology and Innovation) 52(Industrial стр. 44-56 because it works under the set laws of motions of and Manufacturing Engineering) the end-effector and actuators, which simplifies the 49(Industrial and Manufacturing DOI: 10.15587/1729-4061.2020.203131 control system and improves its dynamics. Parallel Engineering) 46(Industrial and manipulators of a RoboMech class work with Manufacturing Engineering) 46(Energy certain structural schemes and geometrical Engineering and Power Technology) parameters of their links. The considered parallel 45(Computer Science Applications) manipulator is formed by connecting the output 44(Control and Systems Engineering)) point to a base using one passive and two active closing kinematic chains (CKC). Passive CKC have zero degree of freedom and it does not impose a geometrical constraint on the movement of the output point, so the geometrical parameters of the links of the passive CKC are freely varied. Active CKCs have active kinematic pairs and they impose geometrical constraints on the movement of the output point. The geometrical parameters of the links of the active CKCs are determined on the basis of the approximation problems of the Chebyshev and least-square approximations. For this, the equations of geometrical constraints are derived in the forms of functions of weighted differences, which are presented in the forms of generalized (Chebyshev) polynomials. This leads to linear iterative problems. The direct and inverse problems of the kinematics of the investigated parallel manipulator are solved. In the direct kinematics problem, the coordinates of the output point are determined by the given position of the input links. In the inverse kinematics problem, the positions of the input links are determined by the coordinates of the output point. The direct and inverse problems of the kinematics of the investigated parallel manipulator are reduced to solving problems on the positions of Sylvester dyads. Numerical results of structural-parametric synthesis and kinematic

			analysis of the considered parallel manipulator are presented. The numerical results of the kinematic analysis show that the maximum deviation of the movement of the output point from the orthogonal trajectories is 1.65 %	
36.	Direct kinematics of a 3-PRRS type parallel manipulator	DOI:10.18178/ijmerr.9.7.967-972 (SJR 0,187; Q4, Procentile 23(Mechanical Engineering) 18(Mechanics of Materials))	This paper is devoted to solving the direct kinematics of a novel 3-PRRS type parallel manipulator with six-degrees-of-freedom, where P, R, and S are prismatic, revolute and spherical kinematic pairs respectively. This parallel manipulator is formed by connecting a moving platform with a fixed platform (base) through three closing kinematic chains of a PRRS type in which the prismatic kinematic pairs and their adjacent revolute kinematic pairs are active and they are located on a fixed platform. The constant and variable parameters of the considered parallel manipulator characterizing its geometry and kinematics respectively are determined. In the direct kinematics, the positions of the moving platform are determined by the known constant parameters of the links and the given variable parameters of the active kinematic pairs. An analysis of the obtained equations of the direct kinematics showed that the variable parameters of the active prismatic kinematic pairs are set free, and these equations are reduced to a 16—order polynomial equation with the passive kinematic pairs variables. Numerical examples of the considered parallel manipulator's direct kinematics are presented, and the results showed that the direct kinematics equations have four solutions corresponding to the four assemblies of the parallel manipulator.	Baigunchekov, Z.Z., Kaiyrov, R.A., Direct kinematics of a 3-PRRS type parallel manipulator. //International Journal of Mechanical Engineering and Robotics Research. – 2020. – Vol.9(7). – P.967-972 DOI: 10.18178/ijmerr.9.7.967-972
37.	Inverse Kinematics and Workspace of a 3- PRRS Type	DOI:10.1007/978-3-030-75271-2_8 (SJR 0,159; Q4, Procentile 23(Mechanical Engineering) 18(Mechanics of Materials))	In this paper, methods of workspace analysis of a 3-PRRS type parallel manipulator are described. The equations of spheres and circles on these spheres, along which the center of the	Baigunchekov, Z., Laribi, M.A., Kaiyrov, R., Zholdassov, E.,Inverse Kinematics and Workspace of a 3-PRRS Type Parallel

	Parallel Manipulator		moving platform can move, are derived, and it is shown that the total reachable area of these spheres is the workspace of the considered parallel manipulator. Numerical examples of defining the workspace of the 3-PRRS type parallel manipulator are presented. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.	Manipulator. //Mechanisms and Machine Science. – 2021. – Vol.103. – P.71-78 DOI: 10.1007/978-3-030-75271-2_8
38.	Kinematic synthesis and analysis of the robomech class parallel manipulator with two grippers , 2021, 10(3), 99	DOI:10.3390/robotics10030099 (SJR 0,390; Q2, Procentile 67(Mechanical Engineering) 70(Control and Optimization) 53(Artificial Intelligence))	In this paper, methods of kinematic synthesis and analysis of the RoboMech class parallel manipulator (PM) with two grippers (end effectors) are presented. This PM is formed by connecting two output objects (grippers) with a base using two passive and one negative closing kinematic chains (CKCs). A PM with two end effectors can be used for reloading operations of stamped products between two adjacent main technologies in a cold stamping line. Passive CKCs represent two serial manipulators with two degrees of freedom, and negative CKC is a three-joined link with three negative degrees of freedom. A negative CKC imposes three geometric constraints on the movements of the two output objects. Geometric parameters of the negative CKC are determined on the basis of the problems of the Chebyshev and least-square approximations. Problems of positions and analogues of velocities and accelerations of the PM with two end effectors have been solved. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.	Baigunchekov, Z., Laribi, M.A., Mustafa, A., Kassinov, A., Kinematic synthesis and analysis of the robomech class parallel manipulator with two grippers . //Robotics. – 2021. – Vol.10(3). – P.99 DOI: 10.3390/robotics10030099
39.	Structural- parametric synthesis of the robomech class parallel mechanism with two sliders	DOI:10.3390/app11219831 (SJR 0,435; Q2, Procentile 71(General Engineering) 62(Instrumentation) 59(Fluid Flow and Transfer Processes) 56(Computer Science Applications) 51(General Materials Science) 50(Process Chemistry and Technology))	This paper addresses the structural-parametric synthesis and kinematic analysis of the RoboMech class of parallel mechanisms (PM) having two sliders. The proposed methods allow the synthesis of a PM with its structure and geometric parameters of the links to obtain the given laws of motions of the input and output links (sliders). The paper outlines a	Baigunchekov, Z., Laribi, M.A., Carbone, G.,Mustafa A.,Amanov, B., Zholdassov, Y,Structural-parametric synthesis of the robomech class parallel mechanism with two sliders. //Applied Sciences (Switzerland). – 2021. – Vol.11(21). – P.9831

			possible application of the proposed approach to design a PM for a cold stamping technological line. The proposed PM is formed	DOI: 10.3390/app11219831
			by connecting two sliders (input and output	
			objects) using one passive and one negative	
			closing kinematic chain (CKC). The passive	
			CKC does not impose a geometric constraint on	
			the movements of the sliders and the geometric	
			parameters of its links are varied to satisfy the	
			geometric constraint of the negative CKC. The	
			negative CKC imposes one geometric	
			constraint on the movements of the sliders and	
			its geometric parameters are determined on the basis of the Chebyshev and least-square	
			approximations. Problems of positions and	
			analogues of velocities and accelerations of the	
			considered PM are solved to demonstrate the	
			feasibility and effectiveness of the proposed	
			formulations and case of study. © 2021 by the	
			authors. Licensee MDPI, Basel, Switzerland.	
40.	Non-isothermal	DOI:10.1016/j.ijheatmasstransfer.2021.121480	Accurate simulation and detailed description	Berdenova, B., Pal, A., Saha, B.B.,
	pore change	(SJR 1,713; Q1, Procentile 98(Fluid Flow	of the dynamics of the adsorption process play	Kaltayev, A., Non-isothermal pore change
	model predicting CO ₂ adsorption	and Transfer Processes)	a significant role in forecasting the	model predicting CO ₂ adsorption onto consolidated activated carbon
	onto consolidated	95(Mechanical Engineering)	performance of new materials when used in various adsorption systems, like	. //International Journal of Heat and Mass
	activated carbon	94(Condensed Matter Physics))	various adsorption systems, like cooling/heating. The activated carbon (AC)	Transfer. – 2021. – Vol.177. – P.121480
			consolidation allows improving the heat	DOI:
			transfer rate inside the adsorption/desorption	10.1016/j.ijheatmasstransfer.2021.121480
			bed and compacting the systems. There are	
			numerous mathematical models in literature	
			for gas adsorption onto granular AC. But for	
			consolidated AC, because of the absence of	
			macropores, most assumptions that work well	
			for granular AC may lead to significant	
			discrepancies. Therefore, the present research	
			proposes a new mathematical model for gas	
			(CO ₂) adsorption onto consolidated adsorbent,	
			a non-isothermal pore change model. The model takes into account the porosity and	
			model takes into account the porosity and	

41.	Multi-parametric dynamic analysis of a rolling bearings system	DOI:10.5545/sv-jme.2021.7178 (SJR 0,271; Q3, Procentile 47(Mechanical Engineering) 42(Mechanics of Materials))	permeability changes due to the adsorption. The validation of the developed model is performed via comparison with the results obtained experimentally and numerically using an isothermal model. The effective Knudsen diffusion coefficient for the working pair is evaluated from porosity data. The rate of adsorption or mass transfer coefficient is estimated using the van't Hoff plot. The study results could be applied in the development of waste heat-driven cooling systems employing consolidated composite material as the adsorbent. The proposed mathematical model is also applicable for many other working pairs. © 2021 Elsevier Ltd A method for calculating amplitudes and constructing frequency characteristics of forced and self-excited vibrations of a rotor-fluid-foundation system on rolling bearings with a non-linear characteristic based on the method of complex amplitudes and harmonic balance has been developed. Non-linear equations of motion of the rotor-fluid-foundation system are derived, and analytical methods of their solution are presented. Frequencies of fundamental and ultra-harmonic resonances are determined. The intervals between self-oscillation frequencies are estimated. The dependence of amplitudes on the amount of fluid in the rotor cavity, the mass of the foundation, linear imbalance, the value of the stiffness coefficient, and the damping coefficient is shown. © 2021 Journal of Mechanical Engineering.	Kydyrbekuly, A., Ibrayev, GG.A., Ospan, T., Nikonov, A., Multi-parametric dynamic analysis of a rolling bearings system. //Strojniski Vestnik/Journal of Mechanical Engineering. – 2021. – Vol.67(9). – P.421-432 DOI: 10.5545/sv-jme.2021.7178
42.	Modeling the Separation Process in Vertical Rotor Systems	DOI:10.1007/978-3-030-83594-1_11 (SJR 0,159; Q4, Procentile 23(Mechanical Engineering) 18(Mechanics of Materials))	In this paper, we study and analyze the features of the separation process in a centrifugal force field, i.e. centrifugation process in vertical rotor systems. The main parameters that determine the time of separation of particles	Kydyrbekuly, A.B., Ibrayev, G.E.,Modeling the Separation Process in Vertical Rotor Systems. //Mechanisms and

			are revealed, and the optimal modes are	Machine Science. – 2021. – Vol.85. –
			indicated both from a constructive and from an	P.104-113
			economic point of view. Special cases of a fixed	DOI: 10.1007/978-3-030-83594-1_11
			rotor are considered. Nonlinear differential	
			equations of motion of a suspension particle	
			are obtained, which do not have an exact	
			solution. The study is carried out by analytical	
			and numerical methods. The dependences of	
			the slope angles of the tubes on the angular	
			velocity of rotation of the rotor, sedimentation	
			curves that allow one to estimate the time of	
			deposition of particles, as well as the effect of	
			the dispersed composition on the separation	
			process as a whole, are obtained. The results of	
			the study of this work allow us to determine	
			with sufficient accuracy all the necessary	
			characteristics working process of separation	
			and sedimentation, and also allow in certain	
			cases to exclude experimental work. © 2022,	
			The Author(s), under exclusive license to	
			Springer Nature Switzerland AG.	
43.	Structural-	DOI:10.3390/app11219831	This paper addresses the structural-parametric	Baigunchekov, Z., Laribi, M.A., Carbone,
45.	parametric	(SJR 0,435; Q2, Procentile 71(General	synthesis and kinematic analysis of the	G., Mustafa A., Amanov, B., Zholdassov,
	synthesis of the	· · · · · · · · · · · · · · · · · · ·	RoboMech class of parallel mechanisms (PM)	Y.,Structural-parametric synthesis of the
	robomech class	Engineering) 62(Instrumentation)	having two sliders. The proposed methods	robomech class parallel mechanism with
	parallel	59(Fluid Flow and Transfer Processes)	allow the synthesis of a PM with its structure	two sliders. //Applied Sciences
	mechanism with	56(Computer Science Applications)	and geometric parameters of the links to obtain	(Switzerland). – 2021. – Vol.11(21). –
	two sliders	51(General Materials Science)	the given laws of motions of the input and	,
		50(Process Chemistry and Technology))	output links (sliders). The paper outlines a	P.9831
			possible application of the proposed approach	DOI: 10.3390/app11219831
			to design a PM for a cold stamping	
			technological line. The proposed PM is formed	
			by connecting two sliders (input and output	
1			objects) using one passive and one negative	
			closing kinematic chain (CKC). The passive	
1			CKC does not impose a geometric constraint on	
			the movements of the sliders and the geometric	
1			parameters of its links are varied to satisfy the	
			geometric constraint of the negative CKC. The	

			negative CKC imposes one geometric constraint on the movements of the sliders and its geometric parameters are determined on the basis of the Chebyshev and least-square approximations. Problems of positions and analogues of velocities and accelerations of the considered PM are solved to demonstrate the feasibility and effectiveness of the proposed formulations and case of study. © 2021 by the	
44.	Impact of loading rate on asphalt concrete deformation and failure	DOI:10.18720/MCE.100.8 (SJR 0,4; Q3, Procentile 81(Building and Construction) 79(Civil and Structural Engineering))	authors. Licensee MDPI, Basel, Switzerland. The results for experimental determination of characteristics have been given and analyzed in this article for deformation and failure of an asphalt concrete at eleven loading rates from 0.000563 MPa/s to 0.652 MPa/s differing in 1158 times. A hot fine-grained dense asphalt concrete of type B prepared with a viscous	Iskakbayev, A., Teltayev, B., Rossi, C.O., Yensebayeva, G.Abu B.,Kutimov K.,,Impact of loading rate on asphalt concrete deformation and failure. //Magazine of Civil Engineering. – 2020. – Vol.100(8). – P.10008 DOI: 10.18720/MCE.100.8
			bitumen of grade BND 100/130 which is traditionally used in road construction has been selected for the research. The tests have been performed at the temperature of 22–24 °C in a specially invented and assembled device according to the scheme of direct tension. The asphalt concrete samples had a shape of rectangular beam with dimensions 5×5×15 cm.	DOI: 10.10/20/MGL.100.0
			It is found that from the moment of loading to the moment of failure the asphalt concrete is deformed nonlinearly. The rate of nonlinearity is increased with the load increase. Loading rate effects greatly the characteristics of deformation and failure of the asphalt concrete: failure time, specific work of deformation and failure deformation are	
			decreased in 242, 160 and 3 times respectively at the loading rate increase in 1158 (nearly 1200) times from 0.000563 MPa/s to 0.652 MPa/s and the strength is increased in 5 times. Dependences for characteristics of the asphalt concrete failure (failure time, failure	

			deformation, specific work of deformation and strength) on a loading rate are described with a high accuracy by power functions. © Iskakbayev, A.,Teltayev, B.B.,Rossi, C.O.,Yensebayeva, G.,Abu, B., Kutimov, K.S., 2020.	
45.	Modeling of hereditary materials relaxation by Abel Kernel	DOI:10.32014/2020.2518-170X.154 (SJR 0,323; Q3, Procentile 40(Geology) 37(Geotechnical Engineering and Engineering Geology))		Zhurinov, M.Zh., Iskakbayev, A.I., Teltayev, B.B., Kutimov, K.S.,Modeling of hereditary materials relaxation by Abel Kernel. //News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences. – 2020. – Vol.6(444). – P.254-260 DOI: 10.32014/2020.2518-170X.154
46.	Long-term strength of asphalt concrete and its applications 2020, 244, 118325	DOI:10.1016/j.conbuildmat.2020.118325 (SJR 1,662; Q1, Procentile 95(Civil and Structural Engineering) 94(Geotechnical Engineering and Engineering GeologyBuilding and Construction) 87(General Materials Science))	An international journal dedicated to the investigation and innovative use of materials in construction and repair. Construction and Building Materials provides an international forum for the dissemination of innovative and original research and development in the field of construction and building materials and their application in new works and repair practice. The journal publishes a wide range of innovative research and application papers which describe laboratory and to a limited extent numerical investigations or report on full scale projects. Multi-part papers are discouraged. Construction and Building Materials also publishes detailed case studies and some incisive review articles that contribute new understandings. We are focusing on construction materials papers and we exclude papers on structural engineering, geotechnics and unbound highway layers. The construction materials and technology covered include: cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibres,	Iskakbayev, A.I., Teltayev, B.B., Yestayev, K.Z., Abu, B.D.,Long-term strength of asphalt concrete and its applications. //Construction and Building Materials. – 2020. – Vol.244. – P.118325 DOI: 10.1016/j.conbuildmat.2020.118325

	ī	T		
			recycled materials, bamboo, rammed earth, non-	
			conventional building materials, bituminous	
			materials and railway material applications. The	
			scope of Construction and Building Materials	
			includes, but is not restricted to, materials, NDT	
			and monitoring aspects of new works and repair	
			and maintenance of the following: bridges, high-	
			rise buildings, dams, civil engineering structures,	
			silos, highway pavements, tunnels, water	
			containment structures, sewers, roofing, housing,	
			coastal defences and railways.	
47.	Numerical	DOI: 10.1016/j.renene.2019.06.102	At low ambient temperatures, the heating	Yerdesh, Y., Abdulina, Z., Aliuly,
	simulation on	(SJR 2,052; Q1, Procentile 88(Renewable	capacity and coefficient of performance of a	A.,Belyayev Y.,Mohanraj, M., Kaltayev,
	solar collector and	Energy, Sustainability and the	single stage vapour compression heat pump	A., Numerical simulation on solar collector
	cascade heat	Environment))	cycle is significantly getting reduced. The two	and cascade heat pump combi water
	pump combi		stage cascade heat pump cycle operating with	heating systems in Kazakhstan climates.
	water heating		two different refrigerants provides a	//Renewable Energy. – 2020. – Vol.145. –
	systems in		sustainable solution to lift the condenser	P.1222-1234
	Kazakhstan climates		temperature above 343 K. In this work, a	DOI: 10.1016/j.renene.2019.06.102
	cilliates		numerical simulation model was developed for	,
			predicting the performance of a solar collector	
			and two stage cascade heat pump combi water	
			heating systems under Kazakhstan climatic	
			conditions. The numerical simulation was	
			performed for winter climatic conditions using	
			nine refrigerant pairs such as, R32/R290,	
			R32/R1234yf, R32/R134a, R410A/R290,	
			R410A/R1234yf, R410A/R134a, R744/R290,	
			R744/R1234yf and R744/R134a. The	
			influences of solar irradiation, ambient	
			temperature and condenser temperature are	
			discussed. The solar collector and two stage	
			heat pump combi heating system has about	
			30% energy savings when compared to the	
			conventional two stage cascade heat pump	
			without integration solar collectors. The	
			R32/R290 refrigerant pair is having maximum	
			coefficient of performance of 2.4 at 323 K	

48.	A GPU- accelerated Simulator of Turbulent Reacting Flows	DOI: 10.1080/10618562.2020.1787996 (SJR 0,470; Q2, Procentile 60(Computational Mechanics) 57(Aerospace Engineering) 53(Mechanical Engineering) 51(Energy Engineering and Power Technology) 49(Mechanics of Materials) 43(Condensed Matter Physics))	condensing temperature and 263 K evaporating temperature. The refrigerant R744/R290 pair is identified as an environment friendly sustainable option in terms of its global warming impact for two stage cascade heat pump applications. © 2019 A new computational methodology is developed for large eddy simulation (LES) of turbulent reacting flows using graphic processing units (GPUs). The LES is based on the filtered density function (FDF) of the scalar-composition in conjunction with a discontinuous Galerkin (DG) discretisation scheme on a structured rectangular mesh. This hybrid solver is developed in a manner suitable for GPU computing. The simulator, as devised, is shown to be of the order of 200 times faster than the serial CPU-based calculations; facilitating the use of FDF for practical applications. The consistency and the accuracy of the methodology are demonstrated by simulations of a temporally developing mixing layer, under both non-reacting and reacting conditions. © 2020, © 2020 Informa UK	Inkarbekov, M., Aitzhan, A., Kaltayev, A., Sammak, S.,A GPU-accelerated Simulator of Turbulent Reacting Flows. //International Journal of Computational Fluid Dynamics. — 2020. — P.381-396 DOI: 10.1080/10618562.2020.1787996
49.	Numerical Solution of the Inverse Pharmacokinetic Problem for the Three- Compartment Model	(SJR 0,19; Q 3, Procentile 43 (Engineering: General Engineering)	Limited, trading as Taylor & Francis Group. This article considers the numerical solution of the inverse pharmacokinetics problem for a three-compartment linear model. First, the article presents some reviews of the pharmacokinetics problem and the three-compartment model. The following describes the formulation of the pharmacokinetics problem for a three-compartment linear model. The direct problem is the Cauchy problem for systems of ordinary differential equations. Solving the direct problem analytically, we find the concentration for the	Authors: Syrym Kasenov, Baidaulet Urmashev, Almas Temirbekov and Aidana Amantayeva Title: {Numerical Solution of the Inverse Pharmacokinetic Problem for the Three- Compartment Model} JOURNAL OF Engineering Science and Technology Review Выпуск SpecialIssue, Страницы 123 - 126

				T	<u> </u>
				first compartment, since it is the object of the	
				study. The formulation of the inverse	27 February 2020
				problem is reduced to a nonlinear operator	
				equation. For the inverse problem, seven	
				coefficients concentration for the first	
				compartment should be found for some	
				additional information of a given	
				concentration. The inverse problem is	
				reduced to minimizing the objective	
				functional. For the numerical solution, an	
				adaptive search method is used genetic	
				algorithm. The numerical results of this	
				problem are given. © 2020. School of	
				Science, IHU. All rights reserved.	
50.	Numerical	(SJR 0,189; Q 3, Pro	centile 43	This article considers the numerical solution	Authors: Syrym Kasenov, Baidaulet
	Solution of the	(Engineering: General Engine	eering)	of the inverse pharmacokinetics problem for	Urmashev, Almas Temirbekov and
	Inverse		_	a three-compartment linear model. First, the	Aidana Amantayeva
	Pharmacokinetic			article presents some reviews of the	Title: Numerical Solution of the Inverse
	Problem for the			pharmacokinetics problem and the three-	Pharmacokinetic Problem for the Three-
	Three-			compartment model. The following describes	Compartment Model
	Compartment			the formulation of the pharmacokinetics	JOURNAL OF Engineering Science
	Model			problem for a three-compartment linear	and
				model. The direct problem is the Cauchy	Technology Review
				problem for systems of ordinary differential	Выпуск SpecialIssue, Страницы 123 -
				equations. Solving the direct problem	126
				analytically, we find the concentration for the	Received 26 September 2019; Accepted
				first compartment, since it is the object of the	27 February 2020
				study. The formulation of the inverse	·
				problem is reduced to a nonlinear operator	
				equation. For the inverse problem, seven	
				coefficients concentration for the first	
				compartment should be found for some	
				additional information of a given	

		T		
			concentration. The inverse problem is	
			reduced to minimizing the objective	
			functional. For the numerical solution, an	
			adaptive search method is used genetic	
			algorithm. The numerical results of this	
			problem are given. © 2020. School of	
			Science, IHU. All rights reserved.	
51.	Theorem of	DOI: 10.1515/rose-2020-2035	This paper contains the proof of the positivity	Authors: N. Akanbay, Stanislav
	Furstenberg type	(SJR 0,355; Q 3, Procentile "17	of the top Lyapunov exponent for the	Molchanov, Z. I. Suleimenova
	for	(Mathematics: Analysis), 16	multiplicative stochastic integrals related to	Title: {Theorem of Furstenberg type for
	multiplicative	(Mathematics: Statistics and	the diffusion processes on the Lee algebra of	multiplicative stochastic integrals}
	stochastic	Probability)"	the matrices with zero trace. © 2020 De	September 2020
	integrals		Gruyter. All rights reserved	Random Operators and Stochastic, Tom
				28, Выпуск 3, Equations 28(3):163-175
				DOI: 10.1515/rose-2020-2035
	_	DOI 10 1005/050 0 000 10000 0 00		
52.	Inverse	DOI: 10.1007/978-3-030-48989-2_39	In this paper, geometry and inverse	Authors: Zhumadil Baigunchekov, Said
	Kinematics of a	(SJR 0,39; Q 3, Procentile "23	kinematics of a 3-PRPS type parallel	Zeghloul, Abzal Kassinov
	3-PRPS Type	(Engineering: Mechanical Engineering),	manipulator are studied. This parallel	Title: {Inverse Kinematics of a 3-PRPS
	Parallel	18 (Engineering: Mechanics of	manipulator is formed by connecting a	Type Parallel Manipulator}
	Manipulator	Materials)"	moving platform with a base by three passive	June 2020
			closing kinematic chains of a PRPS type.	In book: Advances in Service and
			Constant and variable parameters	Industrial Robotics (pp.364-370) Tom
			characterizing the geometry of links and	84
			relative movements of elements of kinematic	Mechanisms and Machine Science,
			pairs, respectively, are defined, and the	DOI: 10.1007/978-3-030-48989-2_39
			matrices of binary links and kinematic pairs	
			are derived. On the base of these matrices of	
			binary links and kinematic pairs, the inverse	
			kinematics problem is solved and numerical	
			results are presented. © The Editor(s) (if	
			applicable) and The Author(s), under	

	1			
			exclusive license to Springer Nature	
			Switzerland AG 2020	
53.	Geometry and Inverse Kinematics of 3- PRRS Type Parallel Manipulator	DOI: 10.1007/978-3-030-19648-6_2 (SJR 0,184; Q 3, Procentile "27 (Computer Science: General Computer Science), 22 (Engineering: Control and Systems Engineering)"	In this paper the methods of structural synthesis and inverse kinematics of 3-PRRS type parallel manipulator (PM) are developed. This PM is formed by connecting of a moving platform with a fixed base by three passive closing kinematic chains of PRRS type. Constant and variable parameters characterizing the geometry of links and relative motions of elements of joints are defined. Inverse kinematics of the PM is solved of the basis of solution of the loop-closure matrix equations of the legs. © Springer Nature Switzerland AG 2020	Authors: Zhumadil Baigunchekov, med amine Laribi, Azamat Mustafa, Rustem Kaiyrov, Amanov, Bekzat, Abzal Kassinov Title: {Geometry and Inverse Kinematics of 3-PRRS Type Parallel Manipulator} January 2020 In book: Coral Reefs of the Red Sea (pp.12-18) Advances in Intelligent Systems and Computing, Tom 980 DOI:10.1007/978-3-030-19648-6_2
54.	Time-harmonic dynamics of curved beams	DOI:10.1007/978-3-030-41057-5_52 (SJR 0,15; Q 4, Procentile "17 (Engineering: Aerospace Engineering), 17 (Engineering: Mechanical Engineering), 15 (Engineering: Automotive Engineering)"	Wave propagation along a curved Euler-Bernoulli beam is considered. The dispersion relation is derived and its roots are given in analytical form and described in the complex plane. In contrast to straight beams, in the low-frequency regime three propagating modes coexist and a special zero-frequency bifurcated configuration is present, when the wavenumber magnitude is equal to the curvature of the cen-troid axis of the structure. The first frequency regime is followed by a second regime where a single propagating mode is present, in which longitudinal and transverse waves are strongly coupled. The broadband coupling between longitudinal and transverse waves is also quantified. Finally the transmission	Authors: Bibinur Meirbekova, Michele Brun, Vincent Pagneux Title: {Time-Harmonic Dynamics of Curved Beams} March 2020 In book: Proceedings of XXIV AIMETA Conference 2019 (pp.638-651) Lecture Notes in Mechanical Engineering DOI:10.1007/978-3-030-41057-5_52

			properties of the structure are characterized	
			evidencing a transition between a low and	
			high frequency regime. In the low	
			frequency/high curvature regimes strong	
			coupling between longitudinal and transverse	
			mode is present, while in the high	
			frequency/low curvature regime such	
			coupling is absent. © Springer Nature	
			Switzerland AG 2020.	
55.	GMRES based	DOI:10.1080/23311916.2020.1785189	This article considered the numerical	Authors: Saltanbek T.
	numerical	(SJR 0,312; Q 2, Procentile "67	simulation of multicomponent multiphase	Mukhambetzhanov
	simulation and	(Engineering: General Engineering), 62	flow in porous media. The resulting system	D.V. Lebedev, Nurislam Kassymbek,
	parallel	(Computer Science: General Computer	of nonlinear equations linearized by the	Timur Imankulov, Akhmed-Zaki,
	implementation	Science), 52 (Chemical Engineering:	Newton-Raphson method and solved with the	Darkhan Zh, Matkerim Bazargul
	of	General Chemical Engineering)"	iterative Generalized minimal residual	Title: {GMRES based numerical
	multicomponent		method (GMRES) algorithm. To achieve	simulation and parallel implementation
	multiphase flow		better convergence, we used the ILU(0)	of multicomponent multiphase flow in
	in porous media		preconditioner to the GMRES algorithm. As	porous media}
			a result, we used a completely implicit	Cogent Engineering, Том 7, Выпуск 1
			scheme called the Newton-ILU0-GMRES	January 2020
			algorithm to solve the problem of interest.	DOI:10.1080/23311916.2020.1785189
			Based on the obtained sequential algorithm,	
			we implemented a parallel algorithm using	
			Message Passing Interface (MPI) technology.	
			Additionally, we made comparisons between	
			the parallel program of the presented	
			algorithm and the parallel program using the	
			ready-made Portable Extensible Toolkit for	
			Scientific Computation (PETSc) library. We	
			developed an MPI parallel algorithm and	
			tested it on the MVS-10P supercomputer of	
			the Interdepartmental Supercomputer Center	
			of the Russian Academy of Sciences. © 2020,	

			© 2020 The Author(s). This open access	
			article is distributed under a Creative	
		DOI 10 10000 0 1 100 100	Commons Attribution (CC-BY) 4.0 license.	
56.	Determination of the main parameters of the photovoltaic solar module	DOI:10.12720/sgce.9.1.162-169 (SJR 0,203; Q, Procentile "25 (Energy: General: Energy), 20 (Environmental Science: General Environmental Science), 19 (Earth and Planetary Sciences: General Earth and Planetary Sciences)"	This article deals with the determination of the main operating parameters of a photovoltaic solar module. In laboratory tests, the study of the dependence of current, voltage and power on time and density of solar radiation, as well as monitoring of environmental parameters: temperature and humidity of the outside air. Analysis of the test results shows that a photoelectric module with an installed capacity of 800 W and a total battery capacity of 800 Ah provides the electric power industry with a daily consumption of 2.0 2.2 kWh. The discharge time of the battery varies from 11.7 to 3.5 hours when the average electric load of the consumer changes from 300 to 1000 watts. © 2020 The Authors, published by EDP	Authors: Baydaulet A. Urmashev, Murat Kunelbayev, Almas N. Temirbekov, Syrym Kassenov, Zhadra Zhaksylykova, Farida Amenova Title: {Determination of the main parameters of the photovoltaic solar module} E3S Web of Conferences, Tom 191 January 2020 International Journal of Smart Grid and Clean Energy DOI:10.12720/sgce.9.1.162-169
			Sciences	
57.	Numerical Solution of the Inverse Pharmacokinetic Problem for the Three- Compartment Model	(SJR 0,19; Q 3, Procentile "43 (Engineering: General Engineering)"	This article considers the numerical solution of the inverse pharmacokinetics problem for a three-compartment linear model. First, the article presents some reviews of the pharmacokinetics problem and the three-compartment model. The following describes the formulation of the pharmacokinetics problem for a three-compartment linear model. The direct problem is the Cauchy problem for systems of ordinary differential equations. Solving the direct problem analytically, we find the concentration for the	Authors: S. Kasenov, B. Urmashev, A. Temirbekov and A. Amantayeva Title: {Numerical Solution of the Inverse Pharmacokinetic Problem for the Three- Compartment Model} Journal of Engineering Science and Technology ReviewВыпуск Special Issue, Страницы 122 – 126, 2020

		T		
			first compartment, since it is the object of the	
			study. The formulation of the inverse	
			problem is reduced to a nonlinear operator	
			equation. For the inverse problem, seven	
			coefficients concentration for the first	
			compartment should be found for some	
			additional information of a given	
			concentration. The inverse problem is	
			reduced to minimizing the objective	
			functional. For the numerical solution, an	
			adaptive search method is used genetic	
			algorithm. The numerical results of this	
			problem are given. © 2020 School of	
			Science, IHU. All Rights Reserved	
58.	On the use of	DOI: 10.24425-ijet.2020.135676/768	The process of designing and creating an	Authors: Nurlan M. Temirbekov, Tahir
	the loud	(SJR 0,174; Q 4, Procentile "28	integrated distributed information system for	M. Takabayev, Dossan R. Baigereyev,
	platform in the	(Engineering: Electrical and Electronic	storing digitized works of scientists of	Waldemar Wójcik, Konrad Gromaszek,
	work of the	Engineering), 27 (Computer Science:	research institutes of the Almaty academic	Almas N. Temirbekov, and Bakytzhan
	scientific and	Computer Networks and	city is analyzed. The requirements for the	B. Omirzhanova
	educational	Communications)"	storage of digital objects are defined; a	Title: {On the Use of the Loud Platform
	cluster		comparative analysis of the open source	in the Work of the Scientific and
			software used for these purposes is carried	Educational Cluster }
			out. The system fully provides the necessary	Czasopismo International Journal of
			computing resources for ongoing research	Electronics and Telecommunications
			and educational processes, simplifying the	Rocznik 2020
			prospect of its further development, and	Tom Vol. 66, No. 4
			allows to build an advanced IT infrastructure	Strony 629634
			for managing intellectual capital, an	Opis fizyczny Bibliogr. 16 poz., schem.
			electronic library that is intended to store all	DOI: 10.24425-ijet.2020.135676/768
			books and scientific works of the Kazakhstan	
			Engineering Technological University and	
			research institutes of the Almaty academic	
			city. © The Author(s). This is an open-access	

	T			
			article distributed under the terms of the	
			Creative Commons Attribution License (CC	
			BY 4.0,	
			https://creativecommons.org/licenses/by/4.0/	
), which permits use, distribution, and	
			reproduction in any medium, provided that	
			the Article is properly cited.	
59.	Development of	(SJR 0,189; Q 3, Procentile "43	The present article describes the architecture	Authors: Temirbekov N., Baigereyev
	a Distributed	(Engineering:General Engineering)"	of an integrated distributed information	D., Temirbekov A, Omirzhanova B.
	Information		system used to store and manage digitized	Title: {Development of a Distributed
	System of the		works of employees of research institutes of	Information System of the Almaty
	Almaty		the Almaty Academgorodok. The Ceph open	Academgorodok}
	Academgorodok		source software object storage network is	Journal of Engineering Science and
			used as data storage. Testing of the POSIX-	Technology ReviewВыпуск Special
			compatible CephFS file system abstraction is	Issue, Страницы 127 – 130, 2020
			performed. The software part of the	-
			information system consists of four	
			subsystems: repository of digital objects,	
			subsystem for managing current research	
			information, subsystem of integration of	
			distributed information resources, subsystem	
			of access to distributed information resources	
			based on web technologies. The description	
			of the software part of the information system	
			is provided. Integration between the	
			subsystems of the information system is	
			performed. © 2020 School of Science, IHU.	
			All Rights Reserved.	
60.	Numerical	(SJR 0,19; Q 3, Procentile "43	This article considers the numerical solution	Authors: Syrym Kasenov, Baidaulet
	Solution of the	(Engineering: General Engineering)"	of the inverse pharmacokinetics problem for	Urmashev, Almas Temirbekov and
	Inverse	(a three-compartment linear model. First, the	Aidana Amantayeva
	Pharmacokinetic		article presents some reviews of the	
	Problem for the		pharmacokinetics problem and the three-	
	113816III 181 the		production production the three	

	Thus		as an automout we del The fellowing describes	Title. (Numerical Calution of the
	Three-		compartment model. The following describes	Title: {Numerical Solution of the
	Compartment		the formulation of the pharmacokinetics	Inverse Pharmacokinetic Problem for
	Model		problem for a three-compartment linear	the Three- Compartment Model}
			model. The direct problem is the Cauchy	JOURNAL OF Engineering Science
			problem for systems of ordinary differential	and
			equations. Solving the direct problem	Technology Review
			analytically, we find the concentration for the	Выпуск Special Issue, Страницы 122 –
			first compartment, since it is the object of the	126, 2020
			study. The formulation of the inverse	
			problem is reduced to a nonlinear operator	
			equation. For the inverse problem, seven	
			coefficients concentration for the first	
			compartment should be found for some	
			additional information of a given	
			concentration. The inverse problem is	
			reduced to minimizing the objective	
			functional. For the numerical solution, an	
			adaptive search method is used genetic	
			algorithm. The numerical results of this	
			problem are given. © 2020 School of	
			Science, IHU. All Rights Reserved.	
61.	Determination	DOI:10.12720/sgce.9.1.162-169	This article deals with the determination of	Authors: Baydaulet A. Urmashev,
	of the main	(SJR 0,203; Q, Procentile "25 (Energy:	the main operating parameters of a	Murat Kunelbayev, Almas N.
	parameters of	General Energy), 20 (Environmental	photovoltaic solar module. In laboratory	Temirbekov, Syrym Kassenov,
	the photovoltaic	Science: General Environmental	tests, the study of the dependence of current,	Zhaksylykova, Zhadra R., Amenova,
	solar module	Science), 19 (Earth and Planetary	voltage and power on time and density of	Farida
		Sciences: General Earth and Planetary	solar radiation, as well as monitoring of	Title: {Determination of the main
		Sciences)"	environmental parameters: temperature and	parameters of the photovoltaic solar
			humidity of the outside air. Analysis of the	module}
			test results shows that a photoelectric module	January 2020
			with an installed capacity of 800 W and a	International Journal of Smart Grid and
			total battery capacity of 800 Ah provides the	Clean Energy
			electric power industry with a daily	E3S Web of Conferences, Tom 191

			consumption of 2.0 2.2 kWh. The discharge	DOI:10.12720/sgce.9.1.162-169
			time of the battery varies from 11.7 to 3.5	
			hours when the average electric load of the	
			consumer changes from 300 to 1000 watts. ©	
			2020 The Authors, published by EDP	
			Sciences.	
62.	Cogeneration	DOI: 10.1134/S0040601520100079	abstract: Results from experimental studies	Authors: P. A. Nesterenkova, A. G.
	Plants with	(SJR 0,602; Q 2, Procentile 53 (Energy:	of a solar cogeneration system with linear	Nesterenkovb, and A. N. Temirbekova
	Solar Radiation	Nuclear Energy and Engineering), 42	photovoltaic modules of a fundamentally	Title: {Cogeneration Plants with Solar
	Concentrators	(Energy: Energy Engineering and Power	new design are presented. The Λ -shaped	Radiation Concentrators}
		Technology)	frontal walls are installed face-to-face at an	Thermal Engineering, 2020, Vol. 67,
			angle to each other and mutually shield their	No. 10, pp. 706–714.
			own thermal radiation, which decreases the	DOI: 10.1134/S0040601520100079
			radiation heat losses by 27% compared with	
			linear photovoltaic modules of the known	
			designs. The photocurrent generated by	
			cooled solar cells is directed to a system for	
			charging chemical batteries and the thermal	
			energy released is transmitted to the	
			unconsumed intermediate heat-transfer fluid	
			and then, through the surface of coil pipes of	
			counter-current heat exchangers, to the	
			consumed process water of the outer	
			circulation circuit. The further transportation	
			of thermal energy to the storage system	
			occurs by natural circulation of the consumed	
			process water through the temperature	
			gradient formed by the control system over	
			the height between the heat source, the heat	
			exchanger, and the heat receiver, an insulated	
			container (a heat accumulator). For the first	
			time, efficient controlled transportation of	
			heat has been implemented without using a	
		<u> </u>	r #### ########################	

circulation pump owing to the excess thermal energy released during the conversion of solar energy by the solar cells and a photoselective film installed in the focal spot of the optical concentrator. Thus, a possibility of increasing the temperature of the heattransfer fluids at the cogeneration system outlet has been offered. A two-circuit circulation system allows for separation of unconsumed heat-transfer fluids (antifreezing solutions) and the consumed fluid (the process water) by the pressure in the channels and installation of a linear counter-current heat exchanger that performs the functions of a supporting platform's mechanical axis along the rotational axis of the optical concentrator. The system uses a dual-axis solar tracking concentrating system comprised of flat mirrors installed at an angle to the horizon. The arrangement of the Λ shaped photovoltaic modules on the supporting framework in series along the heat-transfer-fluid path allows for a reduction in the overall dimensions of the channels, an increase in the total efficiency of the solar cells, and simplification of the encapsulation technology. A method for calculating the output of the cogeneration plant is provided. The method is based on the experimentally measured characteristics of silicon solar cells and heat losses in the channels of the linear photovoltaic modules. © 2020, Pleiades Publishing, Inc.

<i>(</i> 2	D 1	(CID 0.10 O 2 D 42	701 / / 1 1 11 /1 /1 11 /	A (1 / T ' 1 1 N T D '
63.	Development of	(SJR 0,19; Q 3, Procentile 43	The present article describes the architecture	Authors: Temirbekov N., Baigereyev
	a Distributed	(Engineering: General Engineering)	of an integrated distributed information	D., Temirbekov A., Omirzhanova B.
	Information		system used to store and manage digitized	Development of a Distributed
	System of the		works of employees of research institutes of	Information Title: {System of the
	Almaty		the Almaty Academgorodok. The Ceph open	Almaty Academgorodok}
	Academgorodok		source software object storage network is	Journal of Engineering Science and
			used as data storage. Testing of the POSIX-	Technology Review
			compatible CephFS file system abstraction is	Выпуск Special Issue, Страницы 127 –
			performed. The software part of the	130, 2020
			information system consists of four	
			subsystems: repository of digital objects,	
			subsystem for managing current research	
			information, subsystem of integration of	
			distributed information resources, subsystem	
			of access to distributed information resources	
			based on web technologies. The description	
			of the software part of the information system	
			is provided. Integration between the	
			subsystems of the information system is	
			performed. © 2020 School of Science, IHU.	
			All Rights Reserved.	
64.	On the use of	DOI: 10.24425/ijet.2020.135676	The process of designing and creating an	Authors: Nurlan M. Temirbekov, Tahir
	the loud	(SJR 0,174; Q 4, Procentile "28	integrated distributed information system for	M. Takabayev, Dossan R. Baigereyev,
	platform in the	(Engineering: Electrical and Electronic	storing digitized works of scientists of	Waldemar Wójcik, Konrad Gromaszek,
	work of the	Engineering), 27 (Computer Science:	research institutes of the Almaty academic	Almas N. Temirbekov, and Bakytzhan
	scientific and	Computer Networks and	city is analyzed. The requirements for the	B. Omirzhanova
	educational	Communications)"	storage of digital objects are defined; a	Title: {On the use of the loud platform
	cluster		comparative analysis of the open source	in the work of the scientific and
	0105001		software used for these purposes is carried	educational cluster}
			out. The system fully provides the necessary	JOURNAL OF ELECTRONICS AND
			computing resources for ongoing research	TELECOMMUNICATIONS, 2020,
			and educational processes, simplifying the	VOL. 66, NO. 4, PP. 629-634
			prospect of its further development, and	
	1		prospect of its farther development, und	

_				
			allows to build an advanced IT infrastructure	Manuscript received September 7,
			for managing intellectual capital, an	2020; revised November, 2020.
			electronic library that is intended to store all	DOI: 10.24425/ijet.2020.135676
			books and scientific works of the Kazakhstan	
			Engineering Technological University and	
			research institutes of the Almaty academic	
			city. © The Author(s). This is an open-access	
			article distributed under the terms of the	
			Creative Commons Attribution License (CC	
			BY 4.0,	
			https://creativecommons.org/licenses/by/4.0/	
), which permits use, distribution, and	
			reproduction in any medium, provided that	
			the Article is properly cited	
65.	Reduction	(SJR 0,205; Q 3, Procentile 34	Aim of the study: In this work, the density	Authors: Urishbay C. Chomanov,
	interpolation	(Economics, Econometrics and Finance:	and viscosity of bile extract of cattle are	Nurlan M. Temirbekov, Gul'mira S.
	function for	Economics and Econometrics), 32	determined experimentally, depending on the	Kenenbay, Tamara C. Tultabayeva,
	determining the	(Business, Management and	evaporation time, its humidity and	Bakhytzhan C. Omirzhanova, Mukhtar
	rheological	Accounting: Business and International	temperature. These parameters are used to	C. Tultabayev
	properties of	Management), 28 (Business,	determine the optimal evaporation	Title: {Reduction Interpolation
	bile in farm	Management and Accounting: Strategy	temperature for long-term storage of bile	Function for Determining the
	animals to	and Management)	extract. Methodology: During the	Rheological Properties of Bile in Farm
	increase the		experiment, an isothermal process occurs.	Animals to Increase the Entrepreneurial
	entrepreneurial		Methods for interpolating experimental data	Activity of the Agricultural Sector}
	activity of the		with splines are considered. A computer	Academy of Entrepreneurship Journal
	agricultural		program was developed for interpolating the	Research Article: 2020 Vol: 26 Issue: 1,
	sector		bicubic spline function experimentally	pp. 1-8
			obtained values of density and viscosity	
			depending on the time and humidity of the	
			bile extract. Conclusion: The interpolated	
			results of the experiments are presented as	
			graphs of spatial functions using the	

	1	T		<u> </u>
			SURFER graphical editor. © 2020 Allied	
			Business Academies	
66.	Comparative	DOI: 10.22075/IJNAA.2021.4809	In this paper the implementation of parallel	Authors: T. Imankulov, B. Daribayev,
	analysis of	(SJR 0,161; Q 4, Procentile	algorithm of alternating direction implicit	S. Mukhambetzhanov
	parallel	8(Mathematics: Analysis), 6	(ADI) method has been considered. ADI	Title: {Comparative analysis of parallel
	algorithms for	(Mathematics: Applied Mathematics))	parallel algorithm is used to solve a	algorithms for solving oil recovery
	solving oil		multiphase multicomponent fluid flow	problem using cuda and opencl}
	recovery		problem in porous media. There are various	International Journal of NonLinear
	problem using		technologies for implementing parallel	Analysis and Applications
	cuda and opencl		algorithms on the CPU and GPU for solving	Том 12, Выпуск 1, Страницы 351 –
			hydrodynamic problems. In this paper GPU-	364, 2021
			based (graphic processor unit) algorithm was	DOI: 10.22075/IJNAA.2021.4809
			used. To implement the GPU-based parallel	
			ADI method, CUDA and OpenCL were used.	
			ADI is an iterative method used to solve	
			matrix equations. To solve the tridiagonal	
			system of equations in ADI method, the	
			parallel version of cyclic reduction (CR)	
			method was implemented. The cyclic	
			reduction is a method for solving linear	
			equations by repeatedly splitting a problem	
			as a Thomas method. To implement of a	
			sequential algorithm for solving the oil	
			recovery problem, the implicit Thomas	
			method was used. Thomas method or	
			tridiagonal matrix algorithm is used to solve	
			tridiagonal systems of equations. To test	
			parallel algorithms personal computer	
			installed Nvidia RTX 2080 graphic card with	
			8 GB of video memory was used. The	
			computing results of parallel algorithms	
			using CUDA and OpenCL were compared	
			and analyzed. The main purpose of this	
L		1		

_	1	T		T
67.	The fictitious domain method for the Navier- Stokes equations in natural variables	DOI:10.1063/5.0040727 (SJR 0,177; Q конференция, Procentile 17 (Physics and Astronomy: General Physics and Astronomy)	research work is a comparative analysis of the parallel algorithm computing results on different technologies, in order to show the advantages and disadvantages each of CUDA and OpenCL for solving oil recovery problems. © 2021, Semnan University, Center of Excellence in Nonlinear Analysis and Applications. All rights reserved In this paper, we consider a variant of the fictitious domain method associated with the modification of nonlinear terms in a fictitious subdomain. The model problem shows the effectiveness of using this modification. The proposed version of the method is used to solve the problem of an arbitrary region and to set a boundary condition for pressure. A numerical solution is implemented and the results of numerical results are given. © 2021 Author(s).	Authors: Zh. Zhaksylykova, N. Temirbekov, Y. A. Malgazhdarov Title: {The fictitious domain method for the Navier-Stokes equations in natural variables} February 2021 AIP Conference Proceedings 2325(1):020041 Conference: Third International Conference on Material Science, Smart Structures and Applications: (ICMSS 2020) DOI:10.1063/5.0040727
68.	Using the conjugate equations method for solving inverse problems of mathematical geophysics and mathematical epidemiology	DOI:10.1063/5.0040264 (SJR 0,177; Q конференция, Procentile 17 (Physics and Astronomy: General Physics and Astronomy)	In this paper, the theory of conjugate equations is used to solve the inverse problem of the continuation of potential fields in the direction of disturbing masses, in the inverse problem of magnetotelluric sounding (MTS), for problems of mathematical epidemiology. © 2021 Author(s).	Authors: N. Temirbekov, L. Temirbekova Title: {Using the conjugate equations method for solving inverse problems of mathematical geophysics and mathematical epidemiology} February 2021 AIP Conference Proceedings 2325(1):020023 Conference: Third International Conference on Material Science, Smart

		T		
				Structures and Applications: (ICMSS
				2020)
				DOI:10.1063/5.0040264
69.	Parallel CUDA	DOI: 10.1063/5.0041039	In this paper, we study numerical methods for	Authors: Almas Temirbekov, Dossan
	implementation	(SJR 0,177; Q конференция, Procentile	solving the Navier-Stokes equations in	Baigereyev, S. Amanzholov, Nurlan
	of a numerical	17 (Physics and Astronomy: General	doubly connected domains. Two methods for	Temirbekov, Baidaulet Urmashev
	algorithm for	Physics and Astronomy)	solving the problem are considered. The first	Aidana Amantayeva
	solving the		method is based on constructing a difference	Title: {Parallel CUDA implementation
	Navier-Stokes		problem in variables of the stream function	of a numerical algorithm for solving the
	equations using		and the vortex of velocity using the	Navier-Stokes equations using the
	the pressure		uniqueness condition for pressure. The	pressure uniqueness condition}
	uniqueness		numerical solution of the elliptic equation for	February 2021
	condition		stream functions is found as the sum of the	AIP Conference Proceedings
			solutions of two simple problems of an	2325(1):020063
			elliptic type. One problem is with	Conference: Third International
			homogeneous boundary conditions, and the	Conference on Material Science, Smart
			other is with a homogeneous equation. An	Structures and Applications: (ICMSS
			alternative approach to solving the problem is	2020)
			the fictitious domain method with the	DOI:10.1063/5.0041039
			continuation of the least coefficient. This	
			method does not require satisfying the	
			pressure uniqueness condition, and is simple	
			to implement. An important direction in the	
			development of numerical simulation	
			methods is the study of approximate methods	
			for solving problems of mathematical physics	
			in complex multidimensional areas. To solve	
			many applied problems in irregular areas, the	
			fictitious domain method is widely used,	
			which is characterized by a high degree of	
			automation of programming. The main idea	
			of the fictitious domain method is that the	
			problem is solved not in the original complex	

-				
			domain, but in some other, simpler domain.	
			This allows to create software immediately	
			for a fairly wide class of problems with	
			arbitrary computational domains. The	
			possibilities of applying the fictitious domain	
			method to the problems of hydrodynamics in	
			the variables "stream function, vortex of	
			velocity"are considered in many works. In	
			this paper, we study a numerical method for	
			solving the Navier-Stokes equations in	
			doubly connected domains. A computational	
			finite difference algorithm for solving an	
			auxiliary problem of the fictitious domain	
			method has been developed. The results of	
			numerical modeling of the two-dimensional	
			Navier-Stokes equations by the fictitious	
			domain method with continuation by the	
			lowest coefficient are presented. For this	
			problem, a parallel algorithm was developed	
			using the CUDA architecture, which was	
			tested on various grid dimensions. © 2021	
			Author(s)	
70.	Kinematic	DOI:10.3390/robotics10030099	In this paper, methods of kinematic synthesis	Authors: Zhumadil Baigunchekov, med
	synthesis and	(SJR 0,390; Q 2, Procentile 70	and analysis of the RoboMech class parallel	amine Laribi, Azamat Mustafa
	analysis of the	(Mathematics: Control and	manipulator (PM) with two grippers (end	Title: {Kinematic Synthesis and
	robomech class	Optimization), 67 (Engineering:	effectors) are presented. This PM is formed	Analysis of the RoboMech Class
	parallel	Mechanical Engineering), 53 (Computer	by connecting two output objects (grippers)	Parallel Manipulator with Two
	manipulator	Science: Artificial Intelligence)	with a base using two passive and one	Grippers}
	with two		negative closing kinematic chains (CKCs). A	August 2021 Robotics 10(3):99
	grippers		PM with two end effectors can be used for	DOI:10.3390/robotics10030099
			reloading operations of stamped products	
			between two adjacent main technologies in a	
			cold stamping line. Passive CKCs represent	

			two serial manipulators with two degrees of	
			freedom, and negative CKC is a three-joined	
			link with three negative degrees of freedom.	
			A negative CKC imposes three geometric	
			constraints on the movements of the two	
			output objects. Geometric parameters of the	
			negative CKC are determined on the basis of	
			the problems of the Chebyshev and least-	
			square approximations. Problems of	
			positions and analogues of velocities and	
			accelerations of the PM with two end	
			effectors have been solved. © 2021 by the	
			authors. Licensee MDPI, Basel, Switzerland	
71.	Drying of	DOI: 10.1134/s1810232821010112	Abstract: The article outlines the relevance of	Authors: B.A. Urmashev, K.M.
	Vegetable	(SJR 0,390; Q 2, Procentile 50 (Energy:	production of dried products using a mobile	Khazimov, A.N. Temirbekov, A.T.
	Products in	Energy Engineering and Power	solar dryer plant with mobile shelving. For	Tursynbay, T.V. Torzhenova, M.Zh.
	Mobile Solar	Technology), 49 (Mathematics:	intensification of the drying process, the	Khazimov
	Dryer with	Modeling and Simulation), 48	convection of the drying agent flow in the	Title: {Drying of Vegetable Products in
	Movable	(Environmental Science: Environmental	proposed design of drying chamber was	Mobile Solar Dryer with Movable
	Shelving	Engineering)	studied via numerical solution of the Navier–	Shelving}
			Stokes equations. As a result, a graphical	Journal of Engineering Thermophysics
			interpretation of isolines of moving stream of	Том 30, Выпуск 1, Страницы 145 -
			drying agent in a chamber was obtained.	162 (IF1.402), Pub Date: 2021-06-18,
			Varying dimensionless parameters of the	DOI: 10.1134/s1810232821010112
			drying agent enabled complete coverage of	
			all zones of the dryer chamber. The motion of	
			shelves due to gravitational forces allowed	
			uniform drying of materials. Through	
			multivariate experiments, the influence of the	
			temperature-time regimes of the dryer	
			chamber on the particle size was investigated.	
			The optimal drying conditions for cut fruit	

72.	An abstract theorem on completeness of systems of root vectors of correct restrictions	DOI: 10.1007/s43036-021-00137-2 (SJR 0,401; Q 3, Procentile "46 (Mathematics: Algebra and Number Theory), 35 (Mathematics: Analysis)"	are presented. © 2021, Pleiades Publishing, Ltd The aim of this work is to prove an abstract theorem on completeness of systems of root vectors of correct restrictions with interesting applications for differential operators. Moreover, this result gives a whole class of non-self-adjoint correct restrictions of maximal operator which possesses a complete system of root vectors in a Hilbert space. © 2021, Tusi Mathematical Research Group (TMRG)	Authors: Tulenov K. S., Zhumanova L. K. Title: {An abstract theorem on completeness of systems of root vectors of correct restrictions} Advances in Operator Theory Том 6, Выпуск 2 April 2021 Номер статьи 36 DOI: 10.1007/s43036-021-00137-2
73.	Mixed Lagrangian- Eulerian Simulation of Interaction between a Shockwave and a Cloud of Water Droplets	DOI: 10.1134/S1810232820020071 (SJR 0.457; Q3; Procentile 50 (Energy Engineering and Power Technology), 49 (Modeling and Simulation), 48 (Environmental Engineering), 41 (Condensed Matter Physics))	Abstract: We present a numerical model suitable for simulation of shock orblast waves passing through a cloud of water droplets. The model takesinto account the droplet breakup, radiation, and evaporation effects. The gas phase (a mixture of air and water vapor) is solved within an Eulerian framework with a set of compressible transport equations. The disperse phase (water droplets) is represented by a number of Lagrangian parcels of a specified size and mass distribution. The model has been verified with experimental data. The results show that for large (millimeter-sized) droplets with high Weber numbers, the breakup modelis the most important part for accurate representation of the wave-droplet interaction phenomena, while for very fine droplets (1 µmor less), the evaporation effects are the strongest in the shockwavemitigation process. The radiative heat flux increase due to high dropletemissivity is found to be possible for an intermediate size waterdroplets (about 10–20 µm)in the case of	@article{article, author = {Hrebtov, Michael and Bobrov, M. and Zhakebayev, Dauren and Karzhaubayev, K.}, year = {2020}, month = {04}, pages = {254-263}, title = {Mixed Lagrangian-Eulerian Simulation of Interaction between a Shockwave and a Cloud of Water Droplets}, volume = {29}, journal = {Journal of Engineering Thermophysics}, doi = {10.1134/S1810232820020071} }

			continuous heat release. © 2020, Pleiades Publishing, Ltd.	
74.	Laminar to turbulent flow transition inside the boundary layer adjacent to isothermal wall of natural convection flow in a cubical cavity	DOI: 10.1016/j.ijheatmasstransfer.2020.1208 22 (SJR 1.713; Q1; Procentile 98 (Fluid Flow and Transfer Processes) 95(Mechanical Engineering) 94(Condensed Matter Physics))	We investigate three-dimensional natural convection flow in an air-filled, differentially heated cubical cavity. The vertical wall on the left is heated and the vertical wall on the right is cooled, with the remaining four walls being adiabatic. We performed direct numerical simulations of the natural convection flow using discrete unified gas-kinetic scheme (DUGKS), with an improved implementation of boundary conditions. Thin boundary layers are developed along the two isothermal walls. The laminar to turbulent flow transition inside the boundary layers is studied in this paper. The simulations are conducted at three Rayleigh numbers of 1.5×10°, 1.0×10¹¹0, 1.0×10¹¹1 using nonuniform grids with resolution up to 320³. The Prandtl number is fixed at 0.71. We provide a detailed analysis of the transition from laminar to turbulent flow inside the vertical boundary layers and its influence on the rate of heat transfer. Time traces of temperature and velocity, time-averaged flow field, statistics of fluctuation fields are presented to illustrate distinct behaviors in the laminar and turbulent thermal boundary layer, as well as to determine the transition location at different Ra numbers. The average Nusselt numbers for different Ra numbers are compiled and compared to previous results. A guideline of the resolution requirement is suggested based on the Ra scaling of laminar thermal boundary layer. © 2020 Elsevier Ltd	@article{article, author = {Wen, Xin and Wang, Lian- Ping and Guo, Zhaoli and Zhakebayev, Dauren}, year = {2021}, month = {03}, pages = {120822}, title = {Laminar to turbulent flow transition inside the boundary layer adjacent to isothermal wall of natural convection flow in a cubical cavity}, volume = {167}, journal = {International Journal of Heat and Mass Transfer}, doi = {10.1016/j.ijheatmasstransfer.2020.120 822} }

75.	On the dynamics of drilling	DOI: 10.1016/j.ijengsci.2019.103184 (SJR 2.731; Q1; Procentile 99 (General Engineering) 97 (Mechanical Engineering) 96 (Mechanics of Materials) 92 (General Materials Science)	A multi-parameter approach for analysing drilling dynamics is developed. It is oriented to better understanding peculiarities of the process and optimising existing formulations. The procedure is specified for bending vibrations of a rotating elastic beam pre-stressed simultaneously by an axial compressive force and torque. The appropriately normalized ratio of the bending stiffness to the axial force magnitude is assumed to be small. Two other independent dimensionless parameters correspond to the vibration frequency and the relation between force and torque magnitudes. A classification, similar to that in thin shell theory, is established for free bending vibrations. The associated shortened equations are derived. The asymptotic results are validated by comparison with the dispersion curves calculated from the original full equation of motion. An example of a boundary-value problem for a drill string of a	@article{article, author = {Kaplunov, J. and Khajiyeva, Lelya and Martyniuk, M. and Sergaliyev, A.S.}, year = {2020}, month = {01}, pages = {103184}, title = {On the dynamics of drilling}, volume = {146}, journal = {International Journal of Engineering Science}, doi = {10.1016/j.ijengsci.2019.103184} }
76.	Development of an information system for storing digitized works of the Almaty Academgorodok research institutes	DOI: 10.47086/pims.613534 (SJR 0.190; Q3; Procentile 43 (General Engineering))	finite length is also presented. © 2019 The present article describes the architecture of the integrated distributed information system created for storing digitized works of employees of Almaty Akademgorodok research institutes (Kazakhstan) and providing access to them using Web technology. Comparative analysis of two data storage systems for storing digitized works, Ceph and GlusterFS, is provided. The description of the software part of the information system is provided which consists of four subsystems: repository of digital objects, subsystem for managing current research information, subsystem of integration of distributed information resources, subsystem of access to distributed information resources based	@article{article, author = {TEMİRBEKOV, Nurlan and Baigereyev, Dossan and TEMİRBEKOV, Almas and OMİRZHANOVA, Bakytzhan}, year = {2021}, month = {07}, pages = {}, title = {Development of an Information System for Storing Digitized Works of the Almaty Academgorodok Research Institutes}, journal = {Proceedings of International Mathematical Sciences},

		T		11 (10 1=00 (1) (10 = 0)
			on Web technologies. The relation between the	doi = {10.47086/pims.613534}
			subsystems and their integration is described.	}
			The work defines the requirements to the	
			repository of digital objects. The requirements	
			for the repository of digital objects are defined; a	
			comparative analysis of open source software	
			used for these purposes is made. © 2019	
			Author(s).	
77.	Parallel CUDA	DOI: 10.1063/5.0041039	In this paper, we study numerical methods for	@inproceedings{inproceedings,
	implementation	(SJR 0.177; Q4; Procentile 17 (General	solving the Navier-Stokes equations in doubly	author = {Temirbekov, Almas and
	of a numerical	Physics and Astronomy))	connected domains. Two methods for solving	Baigereyev, Dossan and Temirbekov,
	algorithm for	-	the problem are considered. The first method is	Nurlan and Urmashev, Baidaulet and
	solving the		based on constructing a difference problem in	Amantayeva, Aidana},
	Navier-Stokes		variables of the stream function and the vortex	$year = \{2021\},$
	equations using		of velocity using the uniqueness condition for	$ycar = \{2021\},\$ month = $\{02\},\$
	-		pressure. The numerical solution of the elliptic	
	the pressure		equation for stream functions is found as the	pages = {020063},
	uniqueness		sum of the solutions of two simple problems of	title = {Parallel CUDA implementation
	condition		an elliptic type. One problem is with	of a numerical algorithm for solving
			homogeneous boundary conditions, and the	the Navier-Stokes equations using the
			other is with a homogeneous equation. An	pressure uniqueness condition},
			alternative approach to solving the problem is	$volume = \{2325\},$
			the fictitious domain method with the	journal = { AIP Conference
			continuation of the least coefficient. This	Proceedings},
			method does not require satisfying the pressure	doi = {10.1063/5.0041039}
			uniqueness condition, and is simple to	301 = {10.1003/3.00 1103/3
			implement. An important direction in the	J
			development of numerical simulation methods is	
			the study of approximate methods for solving	
			problems of mathematical physics in complex	
			multidimensional areas. To solve many applied	
			problems in irregular areas, the fictitious domain	
			method is widely used, which is characterized	
			by a high degree of automation of programming.	
			The main idea of the fictitious domain method is	
			that the problem is solved not in the original	

			complex domain, but in some other, simpler domain. This allows to create software immediately for a fairly wide class of problems with arbitrary computational domains. The possibilities of applying the fictitious domain method to the problems of hydrodynamics in the variables "stream function, vortex of velocity"are considered in many works. In this paper, we study a numerical method for solving the Navier-Stokes equations in doubly connected domains. A computational finite difference algorithm for solving an auxiliary problem of the fictitious domain method has been developed. The results of numerical modeling of the two-dimensional Navier-Stokes equations by the fictitious domain method with continuation by	
			the lowest coefficient are presented. For this problem, a parallel algorithm was developed	
			using the CUDA architecture, which was tested	
78.	Near-Resonant	DOI: 10.2478/ama-2021-0005	on various grid dimensions. © 2021 Author(s). The article is concerned with the analysis of the	@article{article,
/8.	Regimes of a	(SJR 0.314; Q3; Procentile 45	problem for a concentrated line load moving at a	author = {Kudaibergenov, Askar and
	Moving Load on	(Mechanical Engineering)	constant speed along the surface of a pre-	Kudaibergenov, Askat and
	a Pre-Stressed	41 (Control and Systems Engineering)	stressed, incompressible, isotropic elastic half-	Prikazchikov, D.},
	Incompressible	+1 (Control and Systems Engineering)	space, within the framework of the plane-strain	year = $\{2021\}$,
	Elastic Half-		assumption. The focus is on the near-critical	$year = \{2021\},\$ $month = \{03\},\$
			regimes, when the speed of the load is close to	pages = $\{30-36\}$,
	Space		that of the surface wave. Both steady-state and	pages = {50-56}, title = {Near-Resonant Regimes of a
			transient regimes are considered.	Moving Load on a Pre-Stressed
			Implementation of the hyperbolic-elliptic	Incompressible Elastic Half-Space},
			asymptotic formulation for the surface wave	volume = {15},
			field allows explicit approximate solution for displacement components expressed in terms of	journal = { Acta Mechanica et
			the elementary functions, highlighting the	Automatica},
			resonant nature of the surface wave. Numerical	Automatica}, doi = {10.2478/ama-2021-0005}
			Total and the surface wave. I willed	uoi – {10.2476/aiiia-2021-0003}
				Ì

				7
			illustrations of the solutions are presented for	
			several material models.	
79.	Differential evolution algorithm of solving an inverse problem for the spatial Solow mathematical model	DOI: 10.1515/jiip-2020-0108 (SJR 0.498; Q3; Procentile 54 (Applied Mathematics))	The differential evolution algorithm is applied to solve the optimization problem to reconstruct the production function (inverse problem) for the spatial Solow mathematical model using additional measurements of the gross domestic product for the fixed points. Since the inverse problem is ill-posed the regularized differential evolution is applied. For getting the optimized solution of the inverse problem the differential evolution algorithm is paralleled to 32 kernels. Numerical results for different technological levels and errors in measured data are presented and discussed. © 2020 Walter de Gruyter GmbH, Berlin/Boston 2020.	@article{article, author = {Kabanikhin, S. and Krivorotko, Olga and Bektemessov, Zh and Bektemesov, Maktagali and Zhang, Shuhua}, year = {2020}, month = {11}, pages = {761-774}, title = {Differential evolution algorithm of solving an inverse problem for the spatial Solow mathematical model}, volume = {28}, journal = {Journal of Inverse and Ill- posed Problems}, doi = {10.1515/jiip-2020-0108}
80.	Numerical Solution of the Inverse Pharmacokinetic Problem for the Three- Compartment Model	DOI:10.51301/vest.su.2020.v138.i2.136 (SJR 0.19; Q3; Procentile 43 (Engineering: General Engineering))	This article considers the numerical solution of the inverse pharmacokinetics problem for a three-compartment linear model. First, the article presents some reviews of the pharmacokinetics problem and the three-compartment model. The following describes the formulation of the pharmacokinetics problem for a three-compartment linear model. The direct problem is the Cauchy problem for systems of ordinary differential equations. Solving the direct problem analytically, we find the concentration for the first compartment, since it is the object of the study. The formulation of the inverse problem is reduced to a nonlinear operator equation. For the inverse problem, seven coefficients concentration for the first compartment should be found for some	@article{article, author = {Urmashev, B.A. and Kasenov, S.Y. and Tursynbay, A.T and Temirbekov, A.N. and Amantayeva, A.B. and Sagimbayeva, L.A.}, year = {2020}, month = {01}, pages = {772-779}, title = {Solutions of the inverse problem of pharmacokinetics for the three-compartment model}, volume = {138}, journal = {Vestnik KazNRTU}, doi = {10.51301/vest.su.2020.v138.i2.136}

81.	Numerical Solution of the Inverse Pharmacokinetic Problem for the Three- Compartment Model	DOI: 10.51301/vest.su.2020.v138.i2.136 (SJR 0.19; Q4; Procentile 43 (Engineering: General Engineering)	additional information of a given concentration. The inverse problem is reduced to minimizing the objective functional. For the numerical solution, an adaptive search method is used genetic algorithm. The numerical results of this problem are given. © 2020. School of Science, IHU. All rights reserved. This article considers the numerical solution of the inverse pharmacokinetics problem for a three-compartment linear model. First, the article presents some reviews of the pharmacokinetics problem and the three-compartment model. The following describes the formulation of the pharmacokinetics problem for a three-compartment linear model. The direct problem is the Cauchy problem for systems of ordinary differential equations. Solving the direct problem analytically, we find the concentration for the first compartment, since it is the object of the study. The formulation of the inverse problem is reduced to a nonlinear operator equation. For the inverse problem, seven coefficients concentration for the first compartment should be found for some additional information of a given concentration. The inverse problem is reduced to minimizing the objective functional. For the numerical solution, an adaptive search method is used genetic algorithm. The numerical results of this problem are given. © 2020 School of Science, IHU. All Rights Reserved.	@article{article, author = {Urmashev, B.A. and Kasenov, S.Y. and Tursynbay, A.T and Temirbekov, A.N. and Amantayeva, A.B. and Sagimbayeva, L.A.}, year = {2020}, month = {01}, pages = {772-779}, title = {Solutions of the inverse problem of pharmacokinetics for the three-compartment model}, volume = {138}, journal = {Vestnik KazNRTU}, doi = {10.51301/vest.su.2020.v138.i2.136} }
82.	Determination of the main parameters of the photovoltaic solar module	DOI: 10.12720/sgce.9.1.162-169 (SJR 0.203; Q4; Procentile 25 (Energy: General: Energy), 20 (Environmental Science: General Environmental Science),	This article deals with the determination of the main operating parameters of a photovoltaic solar module. In laboratory tests, the study of the dependence of current, voltage and power on time and density of solar radiation, as well as	@article{article, author = {Urmashev, Baydaulet and Kunelbayev, Murat and Temirbekov, Almas and Kassenov, Syrym and

		19 (Earth and Planetary Sciences: General Earth and Planetary Sciences)	monitoring of environmental parameters: temperature and humidity of the outside air. Analysis of the test results shows that a photoelectric module with an installed capacity of 800 W and a total battery capacity of 800 Ah provides the electric power industry with a daily consumption of 2.0 2.2 kWh. The discharge time of the battery varies from 11.7 to 3.5 hours when the average electric load of the consumer changes from 300 to 1000 watts. © 2020 The Authors, published by EDP Sciences.	Zhaksylykova, Zhadra and Amenova, Farida}, year = {2020}, month = {01}, pages = {162-169}, title = {Determination of the main parameters of the photovoltaic solar module}, journal = {International Journal of Smart Grid and Clean Energy}, doi = {10.12720/sgce.9.1.162-169} }
83.	On Fredholm solvability and on the index of the generalized Neumann problem for an elliptic equation	DOI:10.1080/17476933.2021.1958797	In this paper, we investigate the Fredholm solvability of the generalized Neumann problem for a high-order elliptic equation in the plane. The equivalence of the solvability conditions of the generalized Neumann problem to the complementarity condition (Shapiro–Lopatinsky condition) is proved. The formula for the index of the specified problem in the class (Formula presented.) is calculated. © 2021 Informa UK Limited, trading as Taylor & Francis Group.	Koshanov B., Soldatov A On Fredholm solvability and on the index of the generalized Neumann problem for an elliptic equation // Complex Variables and Elliptic Equations. — 2021 P. 1-17.
84.	A numerical simulation of air flow in the human respiratory system for various environmental conditions	DOI: 10.1186/s12976-020-00133-8	The functions of the nasal cavity are very important for maintaining the internal environment of the lungs since the inner walls of the nasal cavity control the temperature and saturation of the inhaled air with water vapor until the nasopharynx is reached. In this paper, three-dimensional computational studies of airflow transport in the models of the nasal cavity were carried out for the usual inspiratory velocity in	Issakhov A., Zhandaulet Y., Issakhov A., Abylkassymova A A numerical simulation of air flow in the human respiratory system for various environmental conditions // Theoretical Biology and Medical Modelling 2021 Vol.18. DOI: 10.1186/s12976-020-00133-8

			various environmental conditions. Three-	
			dimensional numerical results are compared	
			with experimental data and calculations of	
			other authors. Numerical results show that	
			during normal breathing, the human nose	
			copes with heat and relative moisture	
			metabolism in order to balance the intra-	
			alveolar conditions. It is also shown in this	
			paper that a normal nose can maintain	
			balance even in extreme conditions, for	
			example, in cold and hot weather. The nasal	
			cavity accelerates heat transfer by narrowing	
			the air passages and swirls from the nasal	
			concha walls of the inner cavity. © 2020,	
			The Author(s).	
85.	Solvability	DOI: 10.3390/fractalfract5040134	This paper is devoted to the fundamental	Aitzhanov S.E.,
	issues of a		problem of investigating the solvability of	Berdyshev A.S., Bekenayeva K.S.
	pseudo-		ini-tial-boundary value problems for a quasi-	Solvability issues of a pseudo-
	parabolic		linear pseudo-parabolic equation of	parabolic fractional order equation with
	fractional order		fractional order with a sufficiently smooth	a nonlinear boundary condition //
	equation with a		boundary. The difference between the	Fractal and Fractional 2021 Vol.5.
	nonlinear		studied problems is that the boundary	DOI: 10.3390/fractalfract5040134
	boundary		conditions are set in the form of a nonlinear	
	condition		boundary condition with a fractional	
			differentiation operator. The main result of	
			this work is establishing the local or global	
			solvability of stated prob-lems, depending	
			on the parameters of the equation. The	
			Galerkin method is used to prove the	
			existence of a quasi-linear pseudo-parabolic	
			equation's weak solution in a bounded	
			domain. Using Sobolev embedding	
			theorems, a priori estimates of the solution	

			are obtained. A priori estimates and the	
			Rellich–Kondrashov theorem are used to	
			prove the existence of the desired solutions	
			to the considered boundary value problems.	
			The uniqueness of the weak generalized	
			solutions of the initial boundary value	
			problems is proved on the basis of the	
			obtained a priori estimates and the	
			application of the generalized Gronwall	
			lemma. The need to consider and study such	
			initial boundary value problems for a quasi-	
			linear pseudo-parabolic equation follows	
			from practical re-quirements, such as	
			solving fractional differential equations that	
			simulate physical processes that occur	
			during the study of liquid filtration	
			processes, etc. © 2021 by the authors.	
			Licensee MDPI, Basel, Switzerland.	
86.	Van der Corput	DOI	The paper is devoted to study analogues of	Ruzhansky M., Torebek B.T Van der
	lemmas for	10.1016/j.bulsci.2021.103016	the van der Corput lemmas involving	Corput lemmas for Mittag-Leffler
	Mittag-Leffler		Mittag-Leffler functions. The generalisation	functions. II. α–directions // Bulletin
	functions. II. α–		is that we replace the exponential function	des Sciences Mathematiques. – 2021
	directions		with the Mittag-Leffler-type function, to	Vol.171.
			study oscillatory integrals appearing in the	
			analysis of time-fractional partial differential	
			equations. More specifically, we study	
			integral of the form	
			$I\alpha,\beta(\lambda)=\int RE\alpha,\beta(i\alpha\lambda\phi(x))\psi(x)dx$, for the	
			range 0[removed]0. This extends the variety	
			of estimates obtained in the first part, where	
			integrals with functions $E\alpha,\beta(i\lambda\phi(x))$ have	
			been studied. Several generalisations of the	
			van der Corput lemmas are proved. As an	

_	1	T		T
			application of the above results, the	
			generalised Riemann-Lebesgue lemma, the	
			Cauchy problem for the time-fractional	
			Klein-Gordon and time-fractional	
			Schrödinger equations are considered. ©	
			2021 The Authors	
87.	On a model of	DOI: 10.1016/j.chaos.2021.111099	In this article, the nonlinear term of the	Kanguzhin B.E On a model of the
	the generation of	-	Navier-Stokes equation is approximated to	generation of turbulence // Chaos,
	turbulence		nonlinear convolutional expressions. At low	Solitons and Fractals. – 2021
			values of viscosity, their values are close if	Vol.150.
			the carrier of the convolution is of the same	DOI: 10.1016/j.chaos.2021.111099
			order of magnitude as the value of viscosity.	3
			It is expected that the dynamics of the thus	
			obtained modified Navier-Stokes equation	
			preserves the physical phenomena described	
			by the Navier-Stokes equation. The	
			dynamics of the modified Navier-Stokes	
			equation is investigated in this work. © 2021	
			Elsevier Ltd	
88.	An inverse	DOI	In this paper, we consider the nonlinear	Antontsev S.N., Khompysh K An
	problem for	10.1088/1361-6420/ac1362	inverse problem for generalized Kelvin-	inverse problem for generalized
	generalized		Voigt equations with the p-Laplace diffusion	Kelvin-Voigt equation with p-
	Kelvin-Voigt		and damping term, describing the motion of	Laplacian and damping term // Inverse
	equation with p-		incompressible viscous fluids. We assume	Problems. – 2021 Vol.37.
	Laplacian and		that the damping term in the momentum	DOI
	damping term		equation depends on whether its signal is	10.1088/1361-6420/ac1362
	dumping term		positive or negative, which may realizes the	1001000, 1001 0.20, 001002
			presence of a source or a sink within the	
			system. The investigated inverse problem	
			consists of finding a coefficient f(t) of the	
			right-hand side of the momentum equation,	
			a vector of velocity field v, and a pressure π .	
			An additional information on a solution of	
			An additional information on a solution of	

			the inverse problem is given as integral overdetermination condition. Under several assumptions on the exponents p, m, the coefficients μ , κ , γ , the dimension of the space d, and specified initial data, we prove the existence and uniqueness of the weak solution of the problem. © 2021 IOP Publishing Ltd.	
89.	Identification of the domain of the sturm—liouville operator on a star graph	DOI 10.3390/sym13071210	This article is devoted to the unique recovering of the domain of the Sturm—Liouville operator on a star graph. The domain of the Sturm—Liouville operator is uniquely identified from the set of spectra of a finite number of specially selected canonical problems. In the general case, the domain of the definition of the original operator can be specified by integrodifferential linear forms. In the case when the domain of the Sturm—Liouville operator on a star graph corresponds to the boundary value problem, it is sufficient to choose only finite parts of the spectra of canonical problems for a unique identification of the boundary form. Moreover, the above statement is valid only for a symmetric star graph. © 2021 by the authors.	Kanguzhin B., Aimal Rasa G.H., Kaiyrbek Z Identification of the domain of the sturm—liouville operator on a star graph // Symmetry. — 2021 Vol.13. DOI 10.3390/sym13071210
90.	On the localization of the spectrum of some perturbations of a two-dimensional	DOI:10.1080/17476933.2021.1885386	In this paper, we study the localization of the discrete spectrum of certain perturbations of a two-dimensional harmonic oscillator. The convergence of the expansion of the source function in terms of the eigenfunctions of a two-dimensional harmonic oscillator is investigated. A	Kanguzhin B.E., Fazullin Z On the localization of the spectrum of some perturbations of a two-dimensional harmonic oscillator // Journal of Mathematical Sciences (United States). – 2021 Vol.66. – P. 1194 - 1208. DOI:10.1080/17476933.2021.1885386

	hommonia		representation of Crearle forestion of a to-	
	harmonic		representation of Green's function of a two-	
	oscillator		dimensional harmonic oscillator is obtained.	
			The singularities of Green's function are	
			highlighted. The well-posed definition of the	
			maximal operator generated by a two-	
			dimensional harmonic oscillator on a	
			specially extended domain of definition is	
			given. Then, we describe everywhere	
			solvable invertible restrictions of the	
			maximal operator. We establish that the	
			eigenvalues of a harmonic oscillator will	
			also be the eigenvalues of well-posed	
			restrictions. The results are supported by	
			illustrative examples. © 2021 Informa UK	
			Limited, trading as Taylor & Francis Group.	
91.	Operators	DOI	In this paper, we study spectral	Kanguzhin B.E Operators Whose
	Whose	10.1007/s10958-020-05167-4	decompositions with respect to a system of	Resolvents Have Convolution
	Resolvents Have		generalized eigenvectors of second-order	Representations and their Spectral
	Convolution		differential operators on an interval whose	Analysis // Journal of Mathematical
	Representations		resolvents possess convolution	Sciences (United States). – 2021
	and their		representations. We obtain the convolution	Vol.252. – P. 384 - 398.
	Spectral		representation of resolvents of second-order	DOI: 10.1007/s10958-020-05167-4
	Analysis		differential operators on an interval with	
			integral boundary conditions. Then, using	
			the convolution generated by the initial	
			differential operator, we construct the	
			Fourier transform. A connection between the	
			convolution operation in the original	
			functional space and the multiplication	
			operation in the space of Fourier transforms	
			is established. Finally, the problem on the	
			convergence of spectral expansions	
			generated by the original differential	

Identification of mathematical model of bacteria population under the antibiotic influence On One Algorithm To Find a Solution to a Linear Two-Point Boundary Value Problem	DOI 10.1515/jiip-2017-0102 DOI 10.1134/S1995080221030173	operator is studied. Examples of convolutions generated by operators are also presented. © 2021, Springer Science+Business Media, LLC, part of Springer Nature. This work is devoted to the identification of a mathematical model of bacteria population under the antibiotic influence, based on the solution of the corresponding inverse problems. These problems are solved by the gradient method, genetic algorithm and Nelder-Mead method. Calculations are made using model and real data. © 2020 De Gruyter. Abstract: A two-parameter family of algorithms for finding an approximatesolution to a linear two-point boundary value problem for a systemof ordinary differential equations is offered. The convergenceconditions for the algorithms are obtained. The necessary	Serovajsky S., Nurseitov D., Kabanikhin S., Azimov A., Ilin A., Islamov R Identification of mathematical model of bacteria population under the antibiotic influence // Journal of Inverse and Ill- Posed Problems. – 2021 Vol.26. – P. 384 - 398. DOI: 10.1515/jiip-2017-0102. Temesheva S.M., Dzhumabaev D.S, Kabdrakhova S.S On One Algorithm To Find a Solution to a Linear Two- Point Boundary Value Problem // Lobachevskii Journal of Mathematics. – 2021 Vol.42. – P. 606 - 612. DOI: 10.1134/S1995080221030173.
		andsufficient coefficient conditions for the well-posedness of considered problem are established. © 2021, Pleiades Publishing, Ltd.	
The classical Kelvin-Voigt problem for incompressible fluids with unknown non- constant density:	DOI 10.1088/1361-6544/abe51e	The classical Kelvin-Voigt equations for incompressible fluids with non-constant density are investigated in this work. To the associated initial-value problem endowed with zero Dirichlet conditions on the assumed Lipschitz-continuous boundary, we prove the existence of weak solutions:	Antontsev S.N., De Oliveira H.B., Khompysh K The classical Kelvin- Voigt problem for incompressible fluids with unknown non-constant density: Existence, uniqueness and regularity // Nonlinearity. – 2021 Vol.34. – P. 3083 – 3111. DOI: 10.1088/1361-6544/abe51e.
	mathematical model of bacteria population under the antibiotic influence On One Algorithm To Find a Solution to a Linear Two-Point Boundary Value Problem The classical Kelvin-Voigt problem for incompressible fluids with unknown non-	mathematical model of bacteria population under the antibiotic influence On One Algorithm To Find a Solution to a Linear Two-Point Boundary Value Problem The classical Kelvin-Voigt problem for incompressible fluids with unknown nonconstant density: 10.1515/jiip-2017-0102 DOI 10.1134/S1995080221030173 DOI 10.1088/1361-6544/abe51e	Identification of mathematical model of bacteria population under the antibiotic influence DOI

	T			
	uniqueness and		existence of a unique pressure. These results	
	regularity		are valid for $d \in \{2, 3, 4\}$. In particular, if d	
			$\in \{2, 3\}$, the regularity of the velocity and	
			density is improved so that their uniqueness	
			can be shown. In particular, the dependence	
			of the regularity of the solutions on the	
			smoothness of the given data of the problem	
			is established. © 2021 IOP Publishing Ltd &	
			London Mathematical Society.	
95.	Kelvin-Voigt	DOI	A nonlinear initial and boundary-value	Antontsev S.N., De Oliveira H.B.,
	equations with	10.3233/ASY-201597	problem for the Kelvin-Voigt equations with	Khompysh K Kelvin-Voigt equations
	anisotropic		anisotropic diffusion, relaxation and	with anisotropic diffusion, relaxation
	diffusion,		absorption/damping terms is considered in	and damping: Blow-up and large time
	relaxation and		this work. The global and local unique	behavior // Asymptotic Analysis. –
	damping: Blow-		solvability of the problem was established in	2021 Vol.121. – P. 125 - 157.
	up and large		(J. Math. Anal. Appl. 473(2) (2019) 1122-	DOI: 10.3233/ASY-201597
	time behavior		1154). In the present work, we show how all	
			the anisotropic exponents of nonlinearity	
			and all anisotropic coefficients should	
			interact with the problem data for the	
			solutions of this problem display	
			exponential and polynomial time-decays.	
			We also establish the conditions for the	
			solutions of this problem to blow-up in a	
			finite time in three different cases: problem	
			without convection, full anisotropic	
			problem, and the problem with isotropic	
			relaxation. © 2021 - IOS Press. All rights	
0.6	D . 1	DOI 10 1124/5100500022104000	reserved.	
96.	Punctual	DOI: 10.1134/S1995080221040089	A nonlinear initial and boundary-value	Dorzhieva, M.V.,Issakhov, A.A.,
	Dimension of		problem for the Kelvin-Voigt equations with	Kalmurzayev, B.S., Kornev, R.A.,
	Algebraic		anisotropic diffusion, relaxation and	Kotov, M.V Punctual Dimension of
			absorption/damping terms is considered in	Algebraic Structures in Certain Classes

07	Structures in Certain Classes	DOI	this work. The global and local unique solvability of the problem was established in (J. Math. Anal. Appl. 473(2) (2019) 1122-1154). In the present work, we show how all the anisotropic exponents of nonlinearity and all anisotropic coefficients should interact with the problem data for the solutions of this problem display exponential and polynomial time-decays. We also establish the conditions for the solutions of this problem to blow-up in a finite time in three different cases: problem without convection, full anisotropic problem, and the problem with isotropic relaxation. © 2021 - IOS Press. All rights reserved.	// Lobachevskii Journal of Mathematics. – 2021 Vol. 42. – P. 716 - 725. DOI: 10.1134/S1995080221040089
97.	Non- commutative analogues of weak compactness criteria in symmetric spaces	DOI 10.1007/s43036-021-00129-2	The aim of this work is to study M. Nowak's and K. M. Chong's weak compactness criteria in non-commutative Orlicz spaces. In addition, we obtain a non-commutative analogue of Pełczyński's property (V) in Orlicz spaces of τ-measurable operators. We also obtain Kolmogorov's compactness criterion in terms of conditional expectations in non-commutative symmetric spaces. © 2021, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.	Nessipbayev Y., Sukochev F., Tulenov K Non-commutative analogues of weak compactness criteria in symmetric spaces // Advances in Operator Theory. — 2021 Vol. 6. DOI: 10.1007/s43036-021-00129-2
98.	The boundedness of the Hilbert transformation from one	DOI 10.1016/j.bulsci.2020.102943	In this paper, we study the boundedness of the Hilbert transformation in Lorentz function spaces, thereby complementing classical results of Boyd. We also characterize the optimal range of a triangular	Zanin D., Sukochev F., Tulenov K The boundedness of the Hilbert transformation from one rearrangement invariant Banach space into another and applications // Bulletin des

	roomongomont		transation approtor in Cabattan I agent-	Sajanaa Mathamatiguaa 2021
	rearrangement		truncation operator in Schatten-Lorentz	Sciences Mathematiques. – 2021
	invariant		ideals. These results further entail sharp	Vol. 167.
	Banach space		commutator estimates and applications to	DOI: 10.1016/j.bulsci.2020.102943
	into another and		operator Lipschitz functions in Schatten-	
	applications		Lorentz ideals. © 2020 Elsevier Masson	
			SAS	
99.	OPTIMAL	DOI	We describe the optimal rearrangement-	Tulenov K OPTIMAL
	REARRANGE	10.32523/2077-9879-2021-12-2-90-103	invariant Banach function range of the	REARRANGEMENT-INVARIANT
	MENT-		classical Hilbert transform acting on a	BANACH FUNCTION RANGE FOR
	INVARIANT		rearrangement-invariant Banach function	THE HILBERT TRANSFORM //
	BANACH		space. We also show the existence of such	Eurasian Mathematical Journal. –
	FUNCTION		optimal range for the Lorentz and	2021 Vol. 12. – P. 01 – 23.
	RANGE FOR		Marcinkiewicz spaces. © 2021. The L.N.	DOI: 10.32523/2077-9879-2021-12-2-
	THE HILBERT		Gumilyov Eurasian National University.	90-103
	TRANSFORM			
100.	Asymptotic	DOI	It is known that the study of boundary value	Nurgabyl D.N., Uaissov A.B
	behavior of the	10.1002/num.22719	and mixed problems for integrable linear	Asymptotic behavior of the solution of
	solution of a		equations encounters significant difficulties	a singularly perturbed general
	singularly		of a fundamental nature. Exceptions are	boundary value problem with boundary
	perturbed		problems with boundary conditions of a	jumps // Numerical Methods for Partial
	general		special type, which are often called	Differential Equations. – 2021 Vol.
	boundary value		integrable or linearizable. The purpose of	37. – P. 2375 - 2392.
	problem with		this article is to study the asymptotic	DOI: 10.1002/num.22719.
	boundary jumps		behaviors of solutions of singularly	DOI: 10.1002/Huin.22/17.
	Journal y Jumps		perturbed general boundary value problems	
			with boundary jumps for higher-order	
			equations. Using the Schlesinger–Birghof	
			theorem, we constructed a fundamental	
			· · · · · · · · · · · · · · · · · · ·	
			system of solutions of a homogeneous	
			perturbed equation of conditionally stable	
			type in the critical case. Initial boundary	
			functions are constructed based on the	
			fundamental system of solutions. An	

101.	Integral Representations of Vector Functions Based on the Parametrix of First-Order Elliptic Systems	DOI 10.1134/S0965542521030143	analytical representation is found, the existence and uniqueness of a solution to this boundary value problem are proved. Asymptotic estimates of the solution and its derivatives are derived from the analytical representation of the solution of the given boundary value problem. The limit passage of solution of the perturbed problem to the solution of the unperturbed problem is proved. The conditions of the existence of jumps are found. The values of boundary jumps are determined. As a result, a class of boundary value problems is highlighted that has possessing of phenomenon of boundary jumps. © 2020 Wiley Periodicals LLC Abstract: Generalized integrals are introduced with kernels depending on the difference of the arguments taken over a domain and a smooth contour, the boundary of this domain. These kernels arise as parametrixes of first-order elliptic systems with variable coefficients. Using such integrals (with complex density over the domain and real density over the contour), representations of vector functions that are smooth in the closed domain are described. The Fredholmity of the representation obtained in the corresponding Banach spaces is established. © 2021, Pleiades Publishing, Ltd.	Soldatov A.P., Otelbaev M Integral Representations of Vector Functions Based on the Parametrix of First-Order Elliptic Systems // Computational Mathematics and Mathematical Physics. – 2021 Vol. 61. – P. 964 - 973. DOI: 10.1002/num.22719.
102.	On Green's function of Cauchy–	DOI 10.1186/s13661-021-01544-3	The definition of a Green's function of a Cauchy–Dirichlet problem for the hyperbolic equation in a quarter plane is	Sadybekov M., Derbissaly BOn Green's function of Cauchy–Dirichlet problem for hyperbolic equation in a

	Dirichlet		given. Its existence and uniqueness have	quarter plane // Boundary Value
			1	Problems. – 2021 Vol. 2021.
	problem for		been proven. Representation of the Green's	
	hyperbolic		function is given. It is shown that the	DOI: 10.1186/s13661-021-01544-3.
	equation in a		Green's function can be represented by the	
	quarter plane		Riemann–Green function. © 2021, The	
100		707	Author(s).	
103.	Boundary	DOI	A one-dimensional volume hyperbolic	Sadybekov M., Derbissaly B
	Conditions of	10.1007/978-3-030-69292-6_20	potential in a domain with curvilinear	Boundary Conditions of Volume
	Volume		boundaries is studied. As a kernel of the	Hyperbolic Potential in a Domain with
	Hyperbolic		hyperbolic potential the fundamental	Curvilinear Boundary // Springer
	Potential in a		solution of the Cauchy problem is chosen. It	Proceedings in Mathematics and
	Domain with		is well-known that in this case the volume	Statistics. – 2021 Vol. 351 P. 257
	Curvilinear		hyperbolic potential satisfies homogeneous	- 271.
	Boundary		initial conditions. The boundary conditions	DOI: 10.1007/978-3-030-69292-6_20
			to which the hyperbolic potential satisfies at	
			lateral boundaries of the domain are	
			constructed. It is shown that the formulated	
			initial-boundary value problem has the	
			unique classical solution. © 2021, Springer	
			Nature Switzerland AG.	
104.	Optimal	DOI	Abstract: We establish sharp order estimates	Bazarkhanov D.B Optimal Cubature
	Cubature	10.1134/S0081543821010028	for the error of optimal cubature formulas on	Formulas on Classes of Periodic
	Formulas on		the Nikol'skii–Besov and Lizorkin–Triebel	Functions in Several Variables //
	Classes of		type spaces,	Proceedings of the Steklov Institute of
	Periodic		$$B^{s},\mathbf{m}$	Mathematics. – 2021 Vol. 312 P.
	Functions in		T^m)\$\$ and	16 - 36.
	Several		$L^{s,\mathrm{matht}}_{p,q}(\mathbb{m})$	DOI: 10.1134/S0081543821010028
	Variables		T^m)\$\$, respectively, for a number of	
			relations between the parameters \$\$\$\$,	
			\$\$p\$\$, \$\$q\$\$, and \$\$\mathtt{m}\$\$	
			$(\$\$s=(s_1,\dots,s_n)\in R^n_+\$\$,$	
			\$\$1\leq p,q\leq\infty\$\$,	
			$\$ \mathtt{m}=(m_1,\dots,m_n)\in{\mathbb}	

105.	Mixed convection in a channel with buoyancy force over backward and forward facing steps: The effects of inclination and geometry	DOI 10.1016/j.csite.2021.101152	N}^n\$\$, \$\$m=m_1+\dots+m_n\$\$). Lower estimates are proved via Bakhvalov's method. Upper estimates are based on Frolov's cubature formulas. © 2021, Pleiades Publishing, Ltd. This paper presents the computational results of heat transfer for a 2D laminar flow with different channel tilts with forward facing step and backward facing step, taking into account buoyancy forces for various bottom wall lengths. The inclination angle influence on the distribution of velocity and temperature is investigated. The validated numerical algorithm was used to the problem forward and backward facing steps with buoyancy force and at various tilt angles. From the obtained numerical results, it can be noticed that the length of the lower part of the channel has a very strong effect on the flow fluctuation and temperature distribution over the entire channel. It should be noticed that the tilt angle also has a very strong effect on the distribution of flow and temperature. Thus, taking into account the buoyancy force changes the shape of the main recirculation region, but at	Issakhov A., Zhandaulet Y., Abylkassyomova A., Sakypbekova M., Issakhov A Mixed convection in a channel with buoyancy force over backward and forward facing steps: The effects of inclination and geometry // Case Studies in Thermal Engineering. — 2021 Vol. 26. DOI: 10.1016/j.csite.2021.101152
			account the buoyancy force changes the shape of the main recirculation region, but at the same time, regardless of the different tilt angles, the number of vortices does not change, but only the size of the vortices changes. It should also be noticed that when the buoyancy force is taken into account,	
			cooling occurs more efficiently in the middle of the channel. © 2021	

106.	Principal frequency of p- sub-Laplacians for general vector fields	DOI 10.4171/ZAA/1674	In this paper, we prove the uniqueness and simplicity of the principal frequency (or the first eigenvalue) of the Dirichlet p-sub-Laplacian for general vector fields. As a byproduct, we establish the Caccioppoli inequalities and also discuss the particular cases on the Grushin plane and on the Heisenberg group. © European Mathematical Society	Ruzhansky M., Sabitbek B., Suragan D Principal frequency of p-sub-Laplacians for general vector fields // Zeitschrift fur Analysis und ihre Anwendung. – 2021 Vol. 40. – P. 97 – 109. DOI: 10.4171/ZAA/1674
107.	Geometric Hardy Inequalities on Starshaped Sets	ISSN 09446532	We present geometric Hardy inequalities on starshaped sets in Carnot groups. Also, we obtain geometric Hardy inequalities on half- spaces for general vector fields. © Heldermann Verlag	Ruzhansky M., Sabitbek B., Suragan D Geometric Hardy Inequalities on Starshaped Sets s // Journal of Convex Analysis. – 2021 Vol. 28.
108.	Sobolev, Hardy, Gagliardo— Nirenberg, and Caffarelli— Kohn— Nirenberg-type inequalities for some fractional derivatives	DOI 10.1007/s43037-020-00097-4	In this paper, we show different inequalities for fractional-order differential operators. In particular, the Sobolev, Hardy, Gagliardo—Nirenberg, and Caffarelli—Kohn—Nirenberg-type inequalities for the Caputo, Riemann—Liouville, and Hadamard derivatives are obtained. In addition, we show some applications of these inequalities. © 2020, Tusi Mathematical Research Group (TMRG).	Kassymov A., Ruzhansky M., Tokmagambetov N., Torebek B.T Sobolev, Hardy, Gagliardo—Nirenberg, and Caffarelli—Kohn—Nirenberg-type inequalities for some fractional derivatives // Banach Journal of Mathematical Analysis. — 2021 Vol. 15. DOI: 10.1007/s43037-020-00097-4
109.	Cauchy type problems for fractional differential equations	DOI 10.1080/10652469.2021.1900174	While it is known that one can consider the Cauchy problem for evolution equations with Caputo derivatives, the situation for the initial value problems for the Riemann–Liouville derivatives is less understood. In this paper, we propose new type initial, inner, and inner-boundary value problems for fractional differential equations with the Riemann–Liouville derivatives. The results	Karimov E., Ruzhansky M., Tokmagambetov N Sobolev, Hardy, Gagliardo–Nirenberg, and Caffarelli– Kohn–Nirenberg-type inequalities for some fractional derivatives // Integral Transforms and Special Functions. – 2021. DOI: 10.1080/10652469.2021.1900174

			on the existence and uniqueness are proved,	
			and conditions on the solvability are found.	
			The well-posedness of the new type of	
			initial, inner, and inner-boundary conditions	
			is also discussed. Moreover, we give explicit	
			formulas for the solutions. As an application	
			fractional partial differential equations for	
			general positive operators are studied. ©	
			2021 The Author(s). Published by Informa	
			UK Limited, trading as Taylor & Francis	
			Group.	
110.	Direct and	DOI	The purpose of this paper is to establish the	Serikbaev D., Ruzhansky M.,
	inverse	10.2989/16073606.2021.192832	solvability results to direct and inverse	Tokmagambetov N., Torebek B.T
	problems for		problems for time-fractional pseudo-	Direct and inverse problems for time-
	time-fractional		parabolic equations with the self-adjoint	fractional pseudo-parabolic equations //
	pseudo-		operators. We are especially interested in	Quaestiones Mathematicae. – 2021.
	parabolic		proving existence and uniqueness of the	DOI: 2989/16073606.2021.192832
	equations		solutions in the abstract setting of Hilbert	
			spaces. © 2021 NISC (Pty) Ltd.	
111.	Fractional	DOI	We consider a space-fractional wave	Altybay A., Ruzhansky M.,
	Klein-Gordon	10.1016/j.chaos.2020.110579	equation with a singular mass term	Tokmagambetov N., Sebih M.E
	equation with		depending on the position and prove that it	Fractional Klein-Gordon equation with
	singular mass		is very weak well-posed. The uniqueness is	singular mass // Chaos, Solitons and
			proved in some appropriate sense.	Fractals. – 2021 Vol. 143.
			Moreover, we prove the consistency of the	DOI: 10.1016/j.chaos.2020.110579
			very weak solution with classical solutions	
			when they exist. In order to study the	
			behaviour of the very weak solution near the	
			singularities of the coefficient, some	
			numerical experiments are conducted where	
			the appearance of a wall effect for the	
			singular masses of the strength of $\delta 2$ is	
			observed. © 2020	

112.	Fractional	DOI	In this paper the space-fractional	Altybay A., Ruzhansky M.,
	Schrödinger	10.1016/S0034-4877(21)00016-1	Schrödinger equations with singular	Tokmagambetov N., Sebih M.E
	Equation with		potentials are studied. Delta like or even	Fractional Schrödinger Equation with
	Singular		higher-order singularities are allowed. By	Singular Potentials of Higher Order //
	Potentials of		using the regularising techniques, we	Reports on Mathematical Physics. –
	Higher Order		introduce a family of 'weakened' solutions,	2021 Vol. 87. – P. 129 – 144.
			calling them very weak solutions. The	DOI: 10.1016/S0034-4877(21)00016-1
			existence, uniqueness and consistency	
			results are proved in an appropriate sense.	
			Numerical simulations are done, and a	
			particles accumulating effect is observed in	
			the singular cases. From the mathematical	
			point of view a "splitting of the strong	
			singularity" phenomena is also observed. ©	
			2021 Polish Scientific Publishers	